High energy electron scattering of liquid water (H 2 O) at near-ambient temperature and pressure was performed in a transmission electron microscope (TEM) to determine the radial distribution of water, which provides information on intra-and intermolecular spatial correlations. A recently developed environmental liquid cell enables formation of a stable water layer, the thickness of which is readily controlled by pressure and flow rate adjustments of a humid air stream passing between two silicon nitride (Si 3 N 4 ) membranes. The analysis of the scattering data is adapted from the x-ray methodology to account for multiple scattering in the H 2 O:Si 3 N 4 sandwich layer. For the H 2 O layer, we obtain oxygen-oxygen (O-O) and oxygen-hydrogen (O-H) peaks at 2.84 Å and 1.83 Å, respectively, in good agreement with values in the literature. This demonstrates the potential of our approach toward future studies of water-based physics and chemistry in TEMs or electron probes of structural dynamics.
Analysis and interpretation of spectrum and correlation data from high-energy nuclear collisions is currently controversial because two opposing physics narratives derive contradictory implications from the same data-one narrative claiming collision dynamics is dominated by dijet production and projectile-nucleon fragmentation, the other claiming collision dynamics is dominated by a dense, flowing QCD medium. Opposing interpretations seem to be supported by alternative data models, and current model-comparison schemes are unable to distinguish between them. There is clearly need for a convincing new methodology to break the deadlock. In this study we introduce Bayesian Inference (BI) methods applied to angular correlation data as a basis to evaluate competing data models. For simplicity the data considered are projections of 2D angular correlations onto 1D azimuth from three centrality classes of 200 GeV Au-Au collisions. We consider several data models typical of current model choices, including Fourier series (FS) and a Gaussian plus various combinations of individual cosine components. We evaluate model performance with BI methods and with power-spectrum (PS) analysis. We find that the FS-only model is rejected in all cases by Bayesian analysis which always prefers a Gaussian. A cylindrical quadrupole cos(2φ) is required in some cases but rejected for 0-5%-central Au-Au collisions. Given a Gaussian centered at the azimuth origin "higher harmonics" cos(mφ) for m > 2 are rejected. A model consisting of Gaussian + dipole cos(φ) + quadrupole cos(2φ) provides good 1D data descriptions in all cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.