Routine diagnostic screening of inborn errors of metabolism (IEM) is currently performed by different targeted analyses of known biomarkers. This approach is time-consuming, targets a limited number of biomarkers and will not identify new biomarkers. Untargeted metabolomics generates a global metabolic phenotype and has the potential to overcome these issues. We describe a novel, single platform, untargeted metabolomics method for screening IEM, combining semi-automatic sample preparation with pentafluorophenylpropyl phase (PFPP)-based UHPLC- Orbitrap-MS. We evaluated analytical performance and diagnostic capability of the method by analysing plasma samples of 260 controls and 53 patients with 33 distinct IEM. Analytical reproducibility was excellent, with peak area variation coefficients below 20% for the majority of the metabolites. We illustrate that PFPP-based chromatography enhances identification of isomeric compounds. Ranked z-score plots of metabolites annotated in IEM samples were reviewed by two laboratory specialists experienced in biochemical genetics, resulting in the correct diagnosis in 90% of cases. Thus, our untargeted metabolomics platform is robust and differentiates metabolite patterns of different IEMs from those of controls. We envision that the current approach to diagnose IEM, using numerous tests, will eventually be replaced by untargeted metabolomics methods, which also have the potential to discover novel biomarkers and assist in interpretation of genetic data.
Untargeted metabolomics is an emerging technology in the laboratory diagnosis of inborn errors of metabolism (IEM). Analysis of a large number of reference samples is crucial for correcting variations in metabolite concentrations that result from factors, such as diet, age, and gender in order to judge whether metabolite levels are abnormal. However, a large number of reference samples requires the use of out-of-batch samples, which is hampered by the semi-quantitative nature of untargeted metabolomics data, i.e., technical variations between batches. Methods to merge and accurately normalize data from multiple batches are urgently needed. Based on six metrics, we compared the existing normalization methods on their ability to reduce the batch effects from nine independently processed batches. Many of those showed marginal performances, which motivated us to develop Metchalizer, a normalization method that uses 10 stable isotope-labeled internal standards and a mixed effect model. In addition, we propose a regression model with age and sex as covariates fitted on reference samples that were obtained from all nine batches. Metchalizer applied on log-transformed data showed the most promising performance on batch effect removal, as well as in the detection of 195 known biomarkers across 49 IEM patient samples and performed at least similar to an approach utilizing 15 within-batch reference samples. Furthermore, our regression model indicates that 6.5–37% of the considered features showed significant age-dependent variations. Our comprehensive comparison of normalization methods showed that our Log-Metchalizer approach enables the use out-of-batch reference samples to establish clinically-relevant reference values for metabolite concentrations. These findings open the possibilities to use large scale out-of-batch reference samples in a clinical setting, increasing the throughput and detection accuracy.
Oligosaccharidoses, sphingolipidoses and mucolipidoses are lysosomal storage disorders (LSDs) in which defective breakdown of glycan-side chains of glycosylated proteins and glycolipids leads to the accumulation of incompletely degraded oligosaccharides within lysosomes. In metabolic laboratories, these disorders are commonly diagnosed by thin-layer chromatography (TLC) but more recently also mass spectrometry-based approaches have been published.To expand the possibilities to screen for these diseases, we developed an ultrahigh-performance liquid chromatography (UHPLC) with a high-resolution accurate mass (HRAM) mass spectrometry (MS) screening platform, together with an open-source iterative bioinformatics pipeline. This pipeline generates comprehensive biomarker profiles and allows for extensive quality control (QC) monitoring. Using this platform, we were able to identify α-mannosidosis, β-mannosidosis, α-N-acetylgalactosaminidase deficiency, sialidosis, galactosialidosis, fucosidosis, aspartylglucosaminuria, GM1 gangliosidosis, GM2 gangliosidosis (M. Sandhoff) and mucolipidosis II/III in patient samples. Aberrant urinary oligosaccharide excretions were also detected for other disorders, including NGLY1 congenital disorder of deglycosylation, sialic acid storage disease, MPS type IV B and GSD II (Pompe disease). For the latter disorder, we identified heptahexose (Hex7), as a potential urinary biomarker, in addition to glucose tetrasaccharide (Glc4), for the diagnosis and monitoring of young onset cases of Pompe disease. Occasionally, so-called "neonate" biomarker profiles were observed in young patients, which were probably due to nutrition.Our UHPLC/HRAM-MS screening platform can easily be adopted in biochemical laboratories and allows for simple and robust screening and straightforward interpretation of the screening results to detect disorders in which aberrant oligosaccharides accumulate.
BackgroundFor neurodevelopmental disorders (NDD), a molecular diagnosis is key for predicting outcome, treatment and genetic counseling. Currently, in about half of NDD cases, routine DNA-based testing fails to establish a genetic diagnosis. Transcriptome analysis (RNA-seq) improves the diagnostic yield for some groups of diseases, but has not been applied to NDD in a routine diagnostic setting.MethodsHere, we explored the diagnostic potential of RNA-seq in a cohort of 96 individuals including 67 undiagnosed NDD subjects. We created a user-friendly web-application to analyze RNA-seq data from single individuals’ cultured skin fibroblasts for genic, exonic and intronic expression outliers, based on modified OUTRIDER Z-scores. Candidate pathogenic events were complemented/matched with genomic data and, if required, confirmed with additional functional assays.ResultsWe identified pathogenic small genomic deletions, mono-allelic expression, aberrant splicing events, deep intronic variants resulting in pseudo-exon insertion, but also synonymous and nonsynonymous variants with deleterious effects on transcription. This approach increased the diagnostic yield for NDD by 12%. Diagnostic pitfalls during transcriptome analysis include detection of splice abnormalities in putative disease genes caused by benign polymorphisms and/or absence of expression of the responsible gene in the tissue of choice. This was misleading in one case and could have led to the wrong diagnosis in the absence of appropriate phenotyping.ConclusionsNonetheless, our results demonstrate the utility of RNA-seq in molecular diagnostics and stress the importance of multidisciplinary team consultation. In particular, the approach is useful for the identification and interpretation of unexpected pathogenic changes in mRNA processing and expression in NDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.