Cerebellar parallel fiber (PF)-Purkinje cell (PC) synapses can undergo postsynaptically expressed long-term depression (LTD) or long-term potentiation (LTP) depending on whether or not the climbing fiber (CF) input is coactivated during tetanization. Here, we show that modifications of the postsynaptic calcium load using the calcium chelator BAPTA or photolytic calcium uncaging result in a reversal of the expected polarity of synaptic gain change. At higher concentrations, BAPTA blocks PF-LTP. These data indicate that PF-LTD requires a higher calcium threshold amplitude than PF-LTP induction and suggest that CF activity acts as a polarity switch by providing dendritic calcium transients. Moreover, previous CF-LTD induction changes the relative PF-LTD versus -LTP induction probability. These findings suggest that bidirectional cerebellar learning is governed by a calcium threshold rule operating "inverse" to the mechanism previously described at other glutamatergic synapses (BCM rule) and that the LTD/LTP induction probability is under heterosynaptic climbing fiber control.
Patients with Hodgkin's disease can develop paraneoplastic cerebellar ataxia because of the generation of autoantibodies against mGluR1 (mGluR1-Abs). Yet, the pathophysiological mechanisms underlying their motor coordination deficits remain to be elucidated. Here, we show that application of IgG purified from the patients' serum to cerebellar slices of mice acutely reduces the basal activity of Purkinje cells, whereas application to the flocculus of mice in vivo evokes acute disturbances in the performance of their compensatory eye movements. In addition, the mGluR1-Abs block induction of long-term depression in cultured mouse Purkinje cells, whereas the cerebellar motor learning behavior of the patients is affected in that they show impaired adaptation of their saccadic eye movements. Finally, postmortem analysis of the cerebellum of a paraneoplastic cerebellar ataxia patient showed that the number of Purkinje cells was significantly reduced by approximately two thirds compared with three controls. We conclude that autoantibodies against mGluR1 can cause cerebellar motor coordination deficits caused by a combination of rapid effects on both acute and plastic responses of Purkinje cells and chronic degenerative effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.