Optimisation of peak capacity is an important strategy in gradient liquid chromatography (LC). This can be achieved by using either long columns or columns packed with small particles. Monolithic columns allow the use of long columns at relatively low back-pressure. The gain in peak capacity using long columns was evaluated by the separation of a tryptic bovine serum albumin digest with an LC-UV-mass spectrometry (MS) system and monolithic columns of different length (150 and 750 mm). Peak capacities were determined from UV chromatograms and MS/MS data were used for Mascot database searching. Analyses with a similar gradient slope for the two columns produced ratios of the peak capacities that were close to the expected value of the square root of the column length ratio. Peak capacities of the short column were 12.6 and 25.0 with 3 and 15 min gradients, respectively, and 29.7 and 41.0 for the long column with 15 and 75 min gradients, respectively. Protein identification scores were also higher for the long column, 641 and 750 for the 3-and 15-min gradients with the short column and 1,376 and 993 for the 15-and 75-min gradients with the long column. Thus, the use of long monolithic columns provides improved peptide separation and increased reliability of protein identification.
The gain in separation efficiency for protein digests using long monolithic columns has been evaluated for a LC-MS system with capillary monolithic columns of different lengths (150 and 750 mm). A mixture of BSA, alpha-casein and beta-casein tryptic digests was used as a test sample. Peak capacity and productivity (peak capacity per unit time) were determined from base peak chromatograms and MS/MS data were used for protein identification by MASCOT database searching. Peak capacity and protein identification scores were higher for the long column. Analyses with similar gradient slope for the two columns produced ratios of the peak capacities that were slightly higher than the expected value of the square root of the column length ratio. Peak capacity ratios varied from 2.7 to 4.0 for four different gradient slopes, while protein identification scores were 2-4 times higher for the long column. Similar values were obtained for the productivity of both columns and the highest productivity was obtained at gradient times of 45 and 75 min for the short and long column, respectively. The use of long monolithic columns improves peptide separation and increases reliability of protein identification for complex digests, especially if longer gradients are chosen.
Two polystyrene-based capillary monolithic columns of different length (50 and 250 mm) were used to evaluate the effects of column length on gradient separation of protein digests. A tryptic digest of a 9-protein mixture was used as a test sample. Peak capacities were determined from selected extracted ion chromatograms, and tandem mass spectrometry data were used for database matching using the MASCOT search engine. Peak capacities and protein identification scores were higher for the long column with all gradients. Peak capacities appear to approach a plateau for longer gradient times; maximum peak capacity was estimated to be 294 for the short column and 370 for the long column. Analyses with similar gradient slope produced a ratio of the peak capacities of 3.36 for the long and the short column, which is slightly higher than the expected value of the square root of the column length ratio. The use of a longer monolith improves peptide separation, as reflected by higher peak capacity, and also increases protein identification, as observed from higher identification scores and a larger number of identified peptides. Attention has also been paid to the peak production rate (PPR, peak capacity per unit time). For short analysis times, the short column produces a higher PPR, while for analysis times longer than 40 min, the PPR of the 250-mm column is higher.Electronic supplementary materialThe online version of this article (doi:10.1007/s00216-010-4578-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.