As machine users generally only define the start and end point of the movement, a large trajectory optimization potential rises for single axis mechanisms performing repetitive tasks. However, a descriptive mathematical model of the mechanism needs to be defined in order to apply existing optimization techniques. This is usually done with complex methods like virtual work or Lagrange equations. In this paper, a generic technique is presented to optimize the design of point-to-point trajectories by extracting position dependent properties with CAD motion simulations. The optimization problem is solved by a genetic algorithm. Nevertheless, the potential savings will only be achieved if the machine is capable of accurately following the optimized trajectory. Therefore, a feedforward motion controller is derived from the generic model allowing to use the controller for various settings and position profiles. Moreover, the theoretical savings are compared with experimental data from a physical setup. The results quantitatively show that the savings potential is effectively achieved thanks to advanced torque feedforward with a reduction of the maximum torque by 12.6% compared with a standard 1/3-profile.
The use of active car suspensions to maximize driver comfort has been of growing interest in the last decades. Various active car suspension control technologies have been developed. In this work, an optimal control for a full-car electromechanical active suspension is presented. Therefore, a scaled-down lab setup model of this full-car active suspension is established, capable of emulating a car driving over a road surface with a much simpler approach in comparison with a classical full-car setup. A kinematic analysis is performed to assure system behaviour which matches typical full-car dynamics. A state-space model is deducted, in order to accurately simulate the behaviour of a car driving over an actual road profile, in agreement with the ISO 8608 norm. The active suspension control makes use of a Multiple-Input-MultipleOutput (MIMO) state-feedback controller with proportional and integral actions. The optimal controller tuning parameters are determined using a Genetic Algorithm, with respect to actuator constraints and without the need of any further manual fine-tuning.
In plants consisting of multiple interacting subsystems, the decision on how to optimally select and place actuators and sensors and the accompanying question on how to control the overall plant is a challenging task. Since there is no theoretical framework describing the impact of sensor and actuator placement on performance, an optimization method exploring the possible configurations is introduced in this paper to find a trade-off between implementation cost and achievable performance.Moreover, a novel model-based procedure is presented to simultaneously co-design the optimal
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.