The cancer burden is rising globally, exerting significant strain on populations and health systems at all income levels. In May 2017, world governments made a commitment to further invest in cancer control as a public health priority, passing the World Health Assembly Resolution 70.12 on cancer prevention and control within an integrated approach. In this manuscript, the 2016 European Society for Medical Oncology Leadership Generation Programme participants propose a strategic framework that is in line with the 2017 WHO Cancer Resolution and consistent with the principle of universal health coverage, which ensures access to optimal cancer care for all people because health is a basic human right. The time for action is now to reduce barriers and provide the highest possible quality cancer care to everyone regardless of circumstance, precondition or geographic location. The national actions and the policy recommendations in this paper set forth the vision of its authors for the future of global cancer control at the national level, where the WHO Cancer Resolution must be implemented if we are to reduce the cancer burden, avoid unnecessary suffering and save as many lives as possible.
This is the largest burnout survey in European Young Oncologists. Burnout is common amongst YOs and rates vary across Europe. Achieving a good work/life balance, access to support services and adequate vacation time may reduce burnout levels. Raising awareness, support and interventional research are needed.
BackgroundThere are multiple existing and emerging therapeutic avenues for metastatic prostate cancer, with a common denominator, which is the need for predictive biomarkers. Circulating tumor DNA (ctDNA) has the potential to cost-efficiently accelerate precision medicine trials to improve clinical efficacy and diminish costs and toxicity. However, comprehensive ctDNA profiling in metastatic prostate cancer to date has been limited.MethodsA combination of targeted and low-pass whole genome sequencing was performed on plasma cell-free DNA and matched white blood cell germline DNA in 364 blood samples from 217 metastatic prostate cancer patients.ResultsctDNA was detected in 85.9% of baseline samples, correlated to line of therapy and was mirrored by circulating tumor cell enumeration of synchronous blood samples. Comprehensive profiling of the androgen receptor (AR) revealed a continuous increase in the fraction of patients with intra-AR structural variation, from 15.4% during first-line metastatic castration-resistant prostate cancer therapy to 45.2% in fourth line, indicating a continuous evolution of AR during the course of the disease. Patients displayed frequent alterations in DNA repair deficiency genes (18.0%). Additionally, the microsatellite instability phenotype was identified in 3.81% of eligible samples (≥ 0.1 ctDNA fraction). Sequencing of non-repetitive intronic and exonic regions of PTEN, RB1, and TP53 detected biallelic inactivation in 47.5%, 20.3%, and 44.1% of samples with ≥ 0.2 ctDNA fraction, respectively. Only one patient carried a clonal high-impact variant without a detectable second hit. Intronic high-impact structural variation was twice as common as exonic mutations in PTEN and RB1. Finally, 14.6% of patients presented false positive variants due to clonal hematopoiesis, commonly ignored in commercially available assays.ConclusionsctDNA profiles appear to mirror the genomic landscape of metastatic prostate cancer tissue and may cost-efficiently provide somatic information in clinical trials designed to identify predictive biomarkers. However, intronic sequencing of the interrogated tumor suppressors challenges the ubiquitous focus on coding regions and is vital, together with profiling of synchronous white blood cells, to minimize erroneous assignments which in turn may confound results and impede true associations in clinical trials.Electronic supplementary materialThe online version of this article (10.1186/s13073-018-0595-5) contains supplementary material, which is available to authorized users.
Adequate blood supply is a prerequisite in the pathogenesis of solid malignancies. As a result, depriving a tumour from its oxygen and nutrients, either by preventing the formation of new vessels, or by disrupting vessels already present in the tumour, appears to be an effective treatment modality in oncology. Given the mechanism by which these agents exert their anti-tumour activity together with the crucial role of tumour vasculature in the pathogenesis of tumours, there is a great need for markers properly reflecting its impact. Circulating endothelial cells (CEC), which are thought to derive from damaged vasculature, may be such a marker. Appropriate enumeration of these cells appears to be a technical challenge. Nevertheless, first studies using validated CEC assays have shown that CEC numbers in patients with advanced malignancies are elevated compared to healthy controls making CEC a potential tool for among other establishing prognosis and therapy-induced effects. In this review, we will address the possible clinical applications of CEC detection in oncology, as well as the pitfalls encountered in this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.