In this paper we apply template protection to an authentication system based on 3D face data in order to protect the privacy of its users. We use the template protection system based on the helper data system (HDS). The experimental results performed on the FRGC v2.0 database demonstrate that the performance of the protected system is of the same order as the performance of the unprotected system. The protected system has a performance of a FAR ≈ 0.19% and a FRR ≈ 16% with a security level of 35 bits.
In recent literature, privacy protection technologies for biometric templates were proposed. Among these is the so-called helper-data system (HDS) based on reliable component selection. In this paper we integrate this approach with face biometrics such that we achieve a system in which the templates are privacy protected, and multiple templates can be derived from the same facial image for the purpose of template renewability. Extracting binary feature vectors forms an essential step in this process. Using the FERET and Caltech databases, we show that this quantization step does not significantly degrade the classification performance compared to, for example, traditional correlation-based classifiers. The binary feature vectors are integrated in the HDS leading to a privacy protected facial recognition algorithm with acceptable FAR and FRR, provided that the intra-class variation is sufficiently small. This suggests that a controlled enrollment procedure with a sufficient number of enrollment measurements is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.