Image-based profiling has emerged as a powerful technology for various steps in basic biological and pharmaceutical discovery, but the community has lacked a large, public reference set of data from chemical and genetic perturbations. Here we present data generated by the Joint Undertaking for Morphological Profiling (JUMP)-Cell Painting Consortium, a collaboration between 10 pharmaceutical companies, six supporting technology companies, and two non-profit partners. When completed, the dataset will contain images and profiles from the Cell Painting assay for over 116,750 unique compounds, over-expression of 12,602 genes, and knockout of 7,975 genes using CRISPR-Cas9, all in human osteosarcoma cells (U2OS). The dataset is estimated to be 115 TB in size and capturing 1.6 billion cells and their single-cell profiles. File quality control and upload is underway and will be completed over the coming months at the Cell Painting Gallery: https://registry.opendata.aws/cellpainting-gallery. A portal to visualize a subset of the data is available at https://phenaid.ardigen.com/jumpcpexplorer/.
Neurological disorders display a broad spectrum of clinical manifestations. Yet, at the cellular level, virtually all these diseases converge into a common phenotype of dysregulated synaptic connectivity. In dementia, synapse dysfunction precedes neurodegeneration and cognitive impairment by several years, making the synapse a crucial entry point for the development of diagnostic and therapeutic strategies. Whereas high-resolution imaging and biochemical fractionations yield detailed insight into the molecular composition of the synapse, standardized assays are required to quickly gauge synaptic connectivity across large populations of cells under a variety of experimental conditions. Such screening capabilities have now become widely accessible with the advent of high-throughput, high-content microscopy. In this review, we discuss how microscopy-based approaches can be used to extract quantitative information about synaptic connectivity in primary neurons with deep coverage. We elaborate on microscopic readouts that may serve as a proxy for morphofunctional connectivity and we critically analyze their merits and limitations. Finally, we allude to the potential of alternative culture paradigms and integrative approaches to enable comprehensive profiling of synaptic connectivity.
A framework to simulate physiologically structured population (PSP) models on high performance compute (HPC) infrastructure is built. Based on the model of a single cell, billions of cells can be simulated in an efficient way, allowing fast simulation of the interaction of an entire organ with other body parts. Trough combination of three state-of-the-art algorithms, the simulation time is decreased with multiple orders of magnitude. First: PSP modelling exploits the fact that a lot of the cells act the same at the same time which results in multiple orders of magnitude speed-up. Secondly, speed-up is achieved by using an unconditionally stable, partial differential equation solver which allows to trade speed for precision and allows big time stepping. Third speed-up is due to the fact that the framework is designed with HPC cluster use in mind. The PSP simulator is mathematically derived to have maximal stability.Simulation results are validated and simulation speed and accuracy are measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.