Question: Is sensorimotor upper limb (UL) therapy of more benefit for motor and somatosensory outcome than motor therapy? Design: Randomised assessor- blinded multi-centre controlled trial with block randomization stratified for neglect, severity of motor impairment, and type of stroke. Participants: 40 first-ever stroke patients with UL sensorimotor impairments admitted to the rehabilitation centre Intervention: Both groups received 16 hours of additional therapy over four weeks consisting of sensorimotor (N=22) or motor (N=18) UL therapy. Outcome measures: Action Research Arm test (ARAT) as primary outcome, and other motor and somatosensory measures were assessed at baseline, post-intervention and after four weeks follow-up. Results: No significant between-group differences were found for change scores in ARAT or any somatosensory measure between the three time points. For UL impairment (Fugl-Meyer assessment), a significant greater improvement was found for the motor group compared to the sensorimotor group from baseline to post-intervention (mean (SD) improvement 14.65 (2.19) versus 5.99 (2.06); p=0.01) and from baseline to follow-up (17.38 (2.37) versus 6.75 (2.29); p=0.003). Conclusion: UL motor therapy may improve motor impairment more than UL sensorimotor therapy in patients with sensorimotor impairments in the early rehabilitation phase post stroke. For these patients, integrated sensorimotor therapy may not improve somatosensory function and may negatively influence motor recovery.
Background: The major global health threat tuberculosis is caused by Mycobacterium tuberculosis (Mtb). Mtb has a complex cell envelope – a partially covalently linked composite of polysaccharides, peptidoglycan and lipids, including a mycolic acid layer – which conveys pathogenicity but also protects against antibiotics. Given previous successes in treating gram-positive and -negative infections with cell wall degrading enzymes, we investigated such approach for Mtb. Objectives: (i) Development of an Mtb microtiter growth inhibition assay that allows undisturbed cell envelope formation, to overcome the invalidation of results by typical clumped Mtb-growth in surfactant-free assays. (ii) Exploring anti-Mtb potency of cell wall layer-degrading enzymes. (iii) Investigation of the concerted action of several such enzymes. Methods: We inserted a bacterial luciferase-operon in an auxotrophic Mtb strain to develop a microtiter assay that allows proper evaluation of cell wall degrading anti-Mtb enzymes. We assessed growth-inhibition by enzymes (recombinant mycobacteriophage mycolic acid esterase (LysB), fungal α-amylase and human and chicken egg white lysozymes) and combinations thereof, in presence or absence of biopharmaceutically acceptable surfactant. Results: Our biosafety level-2 assay identified both LysB and lysozymes as potent Mtb-inhibitors, but only in presence of surfactant. Moreover, most potent disruption of the mycolic acid hydrophobic barrier was obtained by the highly synergistic combination of LysB, α-amylase and polysorbate 80.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.