Abstract. Given the poor prognosis for cholangiocarcinoma, new and effective treatments are urgently needed. HMG-CoA reductase inhibitors (statins) reportedly exert anticancer effects in a variety of diseases, but there have been no reports of these effects in cholangiocarcinoma. In this study, we investigated the utility of statins for cholangiocarcinoma treatment. Proliferation suppression by pitavastatin and atorvastatin was investigated in the human cholangiocarcinoma cell lines HuCCT1 and YSCCC while changes in the cell cycle and intracellular signals were examined by FACS and Western blotting, respectively. Additive proliferation suppression by statins and pre-existing anticancer drugs was also investigated. HuCCT1 and YSCCC cell proliferation was dramatically suppressed by incubation with statins for 72 h or longer. Cell cycle analysis revealed a reduction in the G2M fraction and an increase in the sub-G1 fraction in statin-treated cells, while Western blotting showed increased levels of cleaved caspase-3 and a reduction in p-ERK. Furthermore, statins in combination with gemcitabine, cisplatin and 5-FU showed additive proliferation suppression. In this study, treatment of human cholangiocarcinoma cells with statins induced apoptosis via suppression of the classical MAPK pathway. Together, these results suggest that statins may be a new cholangiocarcinoma treatment option that could potentially enhance the anticancer effect of pre-existing anticancer drugs.
Early diagnosis of pancreatic ductal adenocarcinoma (PDAC) is challenging but essential for improving its poor prognosis. We established a multicenter study to clarify the clinicopathological features, and to propose new algorithm for early diagnosis of PDAC. Ninety-six patients with stage 0 and IA PDAC were enrolled from 13 high-volume centers. Overall, 70% of the patients were asymptomatic. The serum pancreatic enzyme levels were abnormal in half of the patients. The sensitivity of endoscopic ultrasonography (EUS) for detecting small PDAC was superior to computed tomography and magnetic resonance imaging (MRI) (82%, 58%, and 38%, respectively). Indirect imaging findings were useful to detect early-stage PDAC; especially, main pancreatic duct stenosis on MRI had the highest positive rate of 86% in stage 0 patients. For preoperative pathological diagnosis, the sensitivity of endoscopic retrograde cholangiopancreatography (ERCP)-associated pancreatic juice cytology was 84%. Among the stage IA patients, EUS-guided fine-needle aspiration revealed adenocarcinoma in 93% patients. For early diagnosis of PDAC, it is essential to identify asymptomatic patients and ensure close examinations of indirect imaging findings and standardization of preoperative pathological diagnosis. Therefore, a new diagnostic algorithm based on tumor size and imaging findings should be developed.
Abstract. Despite the recent introduction of the new anticancer agents gemcitabine (GEM) and TS-1, as well as combination regimens such as GEM plus cisplatin (CDDP), pancreatic cancer treatment remains relatively ineffective. Both intrinsic and acquired resistance to chemotherapy are major roadblocks to the successful treatment of pancreatic cancer patients. The aims of this study were to examine the expression of multidrug resistance-associated proteins (MRPs) MRP1, MRP2 and MRP3 and to evaluate the correlation between MRP2 expression and CDDP resistance in human pancreatic cancer. Five human pancreatic cancer cell lines and several surgically resected pancreatic cancer tissues were subjected to reversetranscriptase (RT)-PCR, real-time PCR and immunohistochemical analysis. While MRP1 and MRP2 mRNA was expressed in all cell lines, MRP3 mRNA was only detected in two cell lines. In resected pancreatic cancer tissues, only MRP2 mRNA was expressed and it was overexpressed compared with normal pancreatic tissues. MRP2 protein expression was observed in 77.5% (31/40) of cancer tissues, primarily in the cytoplasm of cancer cells, but was not observed in normal pancreatic tissue. Two CDDP-resistant pancreatic cancer cell line SUIT-2 variants, SUIT-2-CD3 and SUIT-2-CD4, were established by continuously administering 10 nM CDDP to SUIT-2 cell lines for 3 and 4 months, respectively. Incubation of these cells with CDDP in the presence of anti-MRP2 antibody or the MRP2 inhibitor MK-571 in a growth inhibition assay demonstrated that the CDDP-resistant variants were more resistant to CDDP than the parent cell line and this resistance was diminished by either anti-MRP2 antibody or MK-571. Moreover, RT-PCR and real-time PCR revealed that while induction of MRP2 mRNA expression was increased in CDDP-resistant compared with parent cells, MRP1 and MRP3 expression remained unchanged. These observations suggest that MRP2 may correlate to intrinsic and acquired resistance for CDDP in human pancreatic cancer.
Objective. To evaluate the effectiveness of radiation protective curtains in reducing the occupational radiation exposure of medical personnel. Methods. We studied medical staff members who had assisted in 80 consecutive therapeutic endoscopic retrograde cholangiopancreatography (ERCP) procedures. Use of radiation protective curtains mounted to the X-ray tube was determined randomly for each procedure, and radiation doses were measured with electronic pocket dosimeters placed outside the protective apron. Results. When protective curtains were not used, the mean radiation doses to endoscopists, first assistants, second assistants, and nurses were 340.9, 27.5, 45.3, and 33.1 µSv, respectively; doses decreased to 42.6, 4.2, 13.1, and 10.6 µSv, respectively, when protective curtains were used (P < 0.01). When the patient had to be restrained during ERCP (n = 8), the radiation dose to second assistants without protective curtains increased by a factor of 9.95 (P < 0.01) relative to cases in which restraint was not required. Conclusions. During ERCP, not only endoscopists, but also assistants and nurses were exposed to high doses of radiation. Radiation exposure to staff members during ERCP was reduced with the use of protective curtains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.