Photomosaic generation is a popular non-photorealistic rendering technique, where a single image is assembled from several smaller ones. Visual responses change depending on the proximity to the photomosaic, leading to many creative prospects for publicity and art. Synthesizing photomosaics typically requires very large image databases in order to produce pleasing results. Moreover, repetitions are allowed to occur which may locally bias the mosaic. This paper provides alternatives to prevent repetitions while still being robust enough to work with coarse image subsets. Three approaches were considered for the matching stage of photomosaics: a greedy-based procedural algorithm, simulated annealing and SoftAssign. It was found that the latter delivers adequate arrangements in cases where only a restricted number of images is available. This paper introduces a novel GPU-accelerated SoftAssign implementation that outperforms an optimized CPU implementation by a factor of 60 times in the tested hardware.
Non-photorealistic rendering (NPR) is an appealing subject in computer graphics with a wide array of applications. As opposed to photorealistic rendering, NPR focuses on highlighting features and artistic traits instead of physical accuracy. Photomosaic generation is one of the most popular NPR techniques, where a single image is assembled from several smaller ones. Visual responses change depending on the proximity to the photomosaic, leading to many creative prospects for publicity. Synthesizing photomosaics typically requires very large image databases in order to produce pleasing results. Moreover, repetitions are allowed to occur which may locally bias the mosaic. This paper provides alternatives to prevent repetitions while still being robust enough to work with coarse image subsets. Three approaches were devised for the matching stage of photomosaics: a greedy-based procedural algorithm, simulated annealing and SoftAssign. We found that the latter two approaches deliver adequate arrangements in cases where only a restricted number of images is available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.