Helium films show various quantum phases that undergo quantum phase transitions by changing coverage n. We found anomalous elastic phenomena in bosonic 4 He and fermionic 3 He films adsorbed on a glass substrate. The films stiffen under AC strain at low temperature with an excess dissipation. The onset temperature of the stiffening decreases to 0 K as n approaches a critical coverage nc. The elastic anomaly is explained by thermal activation of helium atoms from the localized to extended states with a distributed energy gap. We determine for the first time the energy band structure of helium films from elasticity. The ground states of 4 He and 3 He at n < nc are identically gapped and compressible, which are possibly a sort of Mott insulator or Mott glass.
Molecular hydrogen is a fascinating candidate for quantum fluid showing bosonic and fermionic superfluidity. We have studied diffusion dynamics of thin films of H2, HD and D2 adsorbed on a glass substrate by measurements of elasticity. The elasticity shows multiple anomalies well below bulk triple point. They are attributed to three different diffusion mechanisms of admolecules and their "freezing" into localized state: classical thermal diffusion of vacancies, quantum tunneling of vacancies, and diffusion of molecules in the uppermost surface. The surface diffusion is active down to 1 K, below which the molecules become localized. This suggests that the surface layer of hydrogen films is on the verge of quantum phase transition to superfluid state.
Adsorbed molecular films provide two-dimensional systems that show various emergent phenomena that are not observed in bulk counterparts. We have measured the elasticity of thin neon films adsorbed on porous glass down to 1 K by the torsional oscillator technique. The shear modulus of a neon film anomalously increases at low temperatures with excess dissipation. This behavior indicates a crossover from a soft (fluidlike) state at high temperatures to a stiff (solidlike) state at low temperatures. The temperature dependence of the anomaly is qualitatively similar to that of the elastic anomaly of helium films found in our recent study. The dissipation peak temperature, however, becomes constant at about 5 K, contrary to the case of helium, in which it decreases to 0 K at a critical coverage of a quantum phase transition between a gapped localized phase and a mobile (superfluid) phase. It is concluded that neon films behave as a classical system that does not show a quantum phase transition or superfluidity, although the films may be strongly supercooled to temperatures much lower than the bulk triple point, 24.6 K. Our results suggest that the elastic anomaly is a universal phenomenon of atomic or molecular films adsorbed on disordered substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.