Pt – Ni nanoparticles were fabricated via the gas phase method. Their performance as anode catalysts for the proton exchange membrane fuel cell was investigated as a function of Ni concentration. The microscopic configurations of the nanoparticles were rather heterogeneous; Pt-rich alloys existed in the core region of particles while a part of the surface layer was composed of the Ni-rich layer. Despite the Ni-rich layer in the shell region, the anode catalyst performance of the Pt – Ni nanoparticles was never deteriorated compared with that of the Pt ones. When the anode catalyst was composed of the Pt nanoparticles, a maximum power density of 112 mW/cm2 was obtained. However, 90% of the power density was still kept even when 40 at. % of Pt was replaced with Ni. The results suggest that a further decrease of Pt composition with maintaining its catalyst performance can be feasible by effective particle dispersing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.