In the field of polymer science, many kinds of polymeric material systems that show a sol-gel transition have been created. However, most systems are unidirectional stimuli-responsive systems that require physical signals such as a change in temperature. Here, we report on the design of a block copolymer solution that undergoes autonomous and periodic sol-gel transition under constant conditions without any on–off switching through external stimuli. The amplitude of this self-oscillation of the viscosity is about 2,000 mPa s. We also demonstrate an intermittent forward motion of a droplet of the polymer solution synchronized with the autonomous sol-gel transition. This polymer solution bears the potential to become the base for a type of slime-like soft robot that can transform its shape kaleidoscopically and move autonomously, which is associated with the living amoeba that moves forward by a repeated sol-gel transition.
We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2'-bipyridine) (Ru(bpy)3), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy)3 was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy)3 vinyl monomer and (ii) post modification (PM) of Ru(bpy)3 with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔTm), where the block copolymer self-assembles into micelle at reduced Ru(bpy)3(2+) state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy)3(3+) state, monotonically extends as the composition of the Ru(bpy)3 increases. The ΔTm of the block copolymer prepared by PM is larger than that by DP. The difference in ΔTm is rationalized from the statistical analysis of the arrangement of the Ru(bpy)3 moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔTm (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.
Here we report an ABA triblock copolymer that can express microscopic autonomous formation and break-up of aggregates under constant condition to generate macroscopic viscoelastic self-oscillation of the solution. The ABA triblock copolymer is designed to have hydrophilic B segment and self-oscillating A segment at the both sides by RAFT copolymerization. In the A segment, a metal catalyst of chemical oscillatory reaction, i.e., the Belousov-Zhabotinsky (BZ) reaction, is introduced as a chemomechanical transducer to change the aggregation state of the polymer depending on the redox states. Time-resolved DLS measurements of the ABA triblock copolymer confirm the presence of a transitional network structure of micelle aggregations in the reduced state and a unimer structure in the oxidized state. This autonomous oscillation of a well-designed triblock copolymer enables dynamic biomimetic softmaterials with spatio-temporal structure.
Here, we report a facile methodology to control the sol−gel transition temperature (T gel ) of a physically crosslinked hydrogel by blending two kinds of ABC triblock terpolymers. Well-defined triblock terpolymers including thermosensitive N-isopropylacrylamide (NIPAAm), ABC1, and ABC2, were prepared by sequential reversible addition− fragmentation chain transfer polymerization. The chemical structure as well as the molecular weight of the A and B blocks for both polymers are identical, whereas the C blocks are different. The C block of ABC1 (C1) is a statistical copolymer of NIPAAm with hydrophobic n-butyl acrylate (BA), while that of ABC2 (C2) is a PNIPAAm homopolymer. Independently prepared ABC triblock terpolymer solutions exhibit well-defined sol− gel transitions. The T gel of ABC1 is lower than that of ABC2 since hydrophobic BA is copolymerized into block C1. Remarkably, the T gel varies linearly within this temperature range by simply blending the two polymers, while the resultant gel strength (∼G′) remains almost unchanged. Therefore, the T gel can be precisely adjusted by the mixing ratio of the two polymers. This method for straightforward manipulation of T gel has great potential for various soft material applications such as biomaterials for tissue engineering, drug delivery systems, and injectable gels.
Brush polymers have emerged as components of novel materials that show huge potential in multiple disciplines and applications, including self‐assembling photonic crystals, drug delivery vectors, biomimetic lubricants, and ultrasoft elastomers. However, an understanding of how this unique topology can affect the properties of highly solvated materials like hydrogels remain under investigated. Here, it is investigated how the high functionality and large overall size of brush polymers enhances the gelation kinetics of low polymer weight percent gels, enabling 100‐fold faster gelation rates and 15‐fold higher stiffness values than gels crosslinked by traditional star polymers of the same composition and polymer chain length. This work demonstrates that brush polymer topology provides a useful means to control gelation kinetics without the need to manipulate polymer composition or crosslinking chemistry. The unique architecture of brush polymers also results in restrained or even nonswelling behavior at different temperatures, regardless of the polymer concentration. Brush polymers therefore are an interesting tool for examining how high‐functionality polymer building blocks can affect structure–property relationships and chemical kinetics in hydrogel materials, and also provide a useful rapidly‐setting hydrogel platform with tunable properties and great potential for multiple material applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.