A self-consistent system of additive covalent radii, R(AB)=r(A) + r(B), is set up for the entire periodic table, Groups 1-18, Z=1-118. The primary bond lengths, R, are taken from experimental or theoretical data corresponding to chosen group valencies. All r(E) values are obtained from the same fit. Both E-E, E-H, and E-CH(3) data are incorporated for most elements, E. Many E-E' data inside the same group are included. For the late main groups, the system is close to that of Pauling. For other elements it is close to the methyl-based one of Suresh and Koga [J. Phys. Chem. A 2001, 105, 5940] and its predecessors. For the diatomic alkalis MM' and halides XX', separate fits give a very high accuracy. These primary data are then absorbed with the rest. The most notable exclusion are the transition-metal halides and chalcogenides which are regarded as partial multiple bonds. Other anomalies include H(2) and F(2). The standard deviation for the 410 included data points is 2.8 pm.
The previous systems of triple-bond and single-bond self-consistent, additive covalent radii, R(AB)=r(A)+ r(B), are completed with a fit for sigma(2)pi(2) double-bonds.The primary bond lengths, R, are taken from experimental or theoretical data corresponding to chosen group valencies. All r(E) values are obtained from the same, self-consistent fit. Many of the calculated primary data came from E=CH(2) and H-E=CH(2) models. Homonuclear LE=EL, formaldehyde-type Group 14-Group 16 and open-shell, X (3) Sigma Group-16 dimer data are included. The standard deviation for the 316 included data points is 3 pm.
The first ansa-aminoborane N-TMPN-CH2C6H4B(C6F5)2 (where TMPNH is 2,2,6,6-tetramethylpiperidinyl) which is able to reversibly activate H2 through an intramolecular mechanism is synthesized. This new substance makes use of the concept of molecular tweezers where the active N and B centers are located close to each other so that one H2 molecule can fit in this void and be activated. Because of the fixed geometry of this ansa-ammonium-borate it forms a short N-H...H-B dihydrogen bond of 1.78 A as determined by X-ray analysis. Therefore, the bound hydrogen can be released above 100 degrees C. In addition, the short H...H contact and the N-H...H (154 degrees) and B-H...H (125 degrees) angles show that the dihydrogen interaction in N-TMPNH-CH2C6H4BH(C6F5)2 is partially covalent in nature. As a basis for discussing the mechanism, quantum chemical calculations are performed and it is found that the energy needed for splitting H2 can arise from the Coulomb attraction between the resulting ionic fragments, or "Coulomb pays for Heitler-London". The air- and moisture-stable N-TMPNH-CH2C6H4BH(C6F5)2 is employed in the catalytic reduction of nonsterically demanding imines and enamines under mild conditions (110 degrees C and 2 atm of H2) to give the corresponding amines in high yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.