Reactions of nitric oxide (NO) with amines in organic solvents
were studied using Hantzsch
dihydropyridines and aromatic primary amines as substrates.
Hantzsch dihydropyridines are
readily oxidized by nitric oxide to give the corresponding pyridines in
quantitative yields. The
addition of oxygen accelerates the reaction rate considerably. On
the other hand, aromatic primary
amines give deaminated products by the reaction with nitric oxide only
in the presence of oxygen
in ethereal solvents or chloroform.
A catalytic asymmetric allylation of 3,4-dihydroisoquinoline was carried out with allyltrimethoxylsilane-Cu as the nucleophile in the presence of DTBM-SEGPHOS as the chiral ligand to afford corresponding chiral 1-allyltetrahydroisoquinoline derivatives in good yield and stereoselectivity. The allyl adduct thus obtained was applied to the synthesis of several isoquinoline alkaloids such as crispine A and homolaudanosine. The reaction was further used for the synthesis of the isoquinoline moiety of schulzeine A.
[reaction: see text] Catalytic asymmetric allylation of 3,4-dihydro-6,7-dimethoxyisoquinoline was carried out using allyltrimethoxysilane in the presence of Cu(I) and tol-BINAP. The allyl adduct thus obtained was transformed to a chiral synthetic intermediate for (-)-emetine in good yield. The procedure was applied to the total synthesis of ent-emetine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.