CCL28 is a CC chemokine signaling via CCR10 and CCR3 that is selectively expressed in certain mucosal tissues such as exocrine glands, trachea, and colon. Notably, these tissues commonly secrete low-salt fluids. RT-PCR analysis demonstrated that salivary glands expressed CCL28 mRNA at the highest levels among various mouse tissues. Single cells prepared from mouse parotid glands indeed contained a major fraction of CD3−B220low cells that expressed CCR10 at high levels and CCR3 at low levels and responded to CCL28 in chemotaxis assays. Morphologically, these cells are typical plasma cells. By immunohistochemistry, acinar epithelial cells in human and mouse salivary glands were strongly positive for CCL28. Furthermore, human saliva and milk were found to contain CCL28 at high concentrations. Moreover, the C terminus of human CCL28 has a significant sequence similarity to histatin-5, a histidine-rich candidacidal peptide in human saliva. Subsequently, we demonstrated that human and mouse CCL28 had a potent antimicrobial activity against Candida albicans, Gram-negative bacteria, and Gram-positive bacteria. The C-terminal 28-aa peptide of human CCL28 also displayed a selective candidacidal activity. In contrast, CCL27, which is most similar to CCL28 and shares CCR10, showed no such potent antimicrobial activity. Like most other antimicrobial peptides, CCL28 exerted its antimicrobial activity in low-salt conditions and rapidly induced membrane permeability in target microbes. Collectively, CCL28 may play dual roles in mucosal immunity as a chemoattractant for cells expressing CCR10 and/or CCR3 such as plasma cells and also as a broad-spectrum antimicrobial protein secreted into low-salt body fluids.
Antimicrobial peptides are a diverse family of small, mostly cationic polypeptides that kill bacteria, fungi and even some enveloped viruses, while chemokines are a group of mostly cationic small proteins that induce directed migration of leukocytes through interactions with a group of seven transmembrane G protein-coupled receptors. Recent studies have shown that antimicrobial peptides and chemokines have substantially overlapping functions. Thus, while some antimicrobial peptides are chemotactic for leukocytes, some chemokines can kill a wide range of bacteria and fungi. Here, we examined a possible direct antiviral activity of chemokines against an enveloped virus HSV-1. Among 22 human chemokines examined, chemokines such as MIP-1 alpha/CCL3, MIP-1 beta/CCL4 and RANTES/CCL5 showed a significant direct antiviral activity against HSV-1. It is intriguing that these chemokines are mostly known to be highly expressed by effector CD8+ T cells. The chemokines with a significant anti-HSV-1 activity commonly bound to HSV-1 virions via envelope glycoprotein gB. Electron microscopy revealed that the chemokines with a significant anti-HSV-1 activity were commonly capable of generating pores in the envelope of HSV-1. Thus, some chemokines have a significant direct antiviral activity against HSV-1 in vitro and may have a potential role in host defense against HSV-1 as a direct antiviral agent.
Aluminum hydroxide (Al) and calcium phosphate (Ca) gels have been used as vaccine adjuvants for many years. We investigated mechanism of the hemolytic activities of both adjuvant materials. The hemolytic activity of each gel depended on the gel dose. The adsorption capacities and the hemolytic activities of both adjuvants decreased as the concentration of phosphate increased in a gel-washing solution. A positive correlation between the hemolytic activity and the adsorption capacity was found in Al-gel. A disruptive effect of Ca-gel on membrane of erythrocytes was shown by electron microscopy. Ca-gel required more than 10 times as much pre-adsorbed ovalbumin as did Al-gel to inhibit the hemolysis. These results suggest that the hemolytic activity of both adjuvant materials depended mainly on the adsorption ability, and it may be useful to control the adsorption ability of adjuvants to reduce their hemolytic activity.
By utilizing a new in vitro transmigration system mimicking the airway mucosa, we have demonstrated that airway epithelial cells play an essential role in transmigration of eosinophils and that multiple factors such as chemokines, extracellular matrix proteins and exogenous inflammatory cytokines are involved in efficient transmigration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.