Normal T cell repertoire contains regulatory T cells that control autoimmune responses in the periphery. One recent study demonstrated that CD4+CD25+ T cells were generated from autoreactive T cells without negative selection. However, it is unclear whether, in general, positive selection and negative selection of autoreactive T cells are mutually exclusive processes in the thymus. To investigate the ontogeny of CD4+CD25+ regulatory T cells, neo-autoantigen-bearing transgenic mice expressing chicken egg OVA systemically in the nuclei (Ld-nOVA) were crossed with transgenic mice expressing an OVA-specific TCR (DO11.10). Ld-nOVA × DO11.10 mice had increased numbers of CD4+CD25+ regulatory T cells in the thymus and the periphery despite clonal deletion. In Ld-nOVA × DO11.10 mice, T cells expressing endogenous TCR αβ chains were CD4+CD25− T cells, whereas T cells expressing autoreactive TCR were selected as CD4+CD25+ T cells, which were exclusively dominant in recombination-activating gene 2-deficient Ld-nOVA × DO11.10 mice. In contrast, in DO11.10 mice, CD4+CD25+ T cells expressed endogenous TCR αβ chains, which disappeared in recombination-activating gene 2-deficient DO11.10 mice. These results indicate that part of autoreactive T cells that have a high affinity TCR enough to cause clonal deletion could be positively selected as CD4+CD25+ T cells in the thymus. Furthermore, it is suggested that endogenous TCR gene rearrangement might critically contribute to the generation of CD4+CD25+ T cells from nonautoreactive T cell repertoire, at least under the limited conditions such as TCR-transgenic models, as well as the generation of CD4+CD25− T cells from autoreactive T cell repertoire.
It remains unknown why the T cell tolerance to nuclear autoantigens is impaired in systemic autoimmune diseases. To clarify this, we generated transgenic mice expressing OVA mainly in the nuclei (Ld-nOVA mice). When CD4+ T cells from DO11.10 mice expressing a TCR specific for OVA323–339 were transferred into Ld-nOVA mice, they were rendered anergic, but persisted in vivo for at least 3 mo. These cells expressed CD44high, CD45RBlow, and were generated after multiple cell divisions, suggesting that anergy is not the result of insufficient proliferative stimuli. Whereas dendritic cells (DCs) from Ld-nOVA (DCs derived from transgenic mice (TgDCs)), which present rather low amount of the self-peptide, efficiently induced proliferation of DO11.10 T cells, divided T cells stimulated in vivo by TgDCs exhibited a lower memory response than T cells stimulated in vitro by peptide-pulsed DCs. Furthermore, we found that repeated transfer of either TgDCs or DCs derived from wild-type mice pulsed with a lower concentration of OVA323–339 induced a lower response of DO11.10 T cells in Ag-free wild-type recipients than DCs derived from wild-type mice. These results suggest that peripheral tolerance to a nuclear autoantigen is achieved by continuous presentation of the self-peptide by DCs, and that the low expression level of the peptide might also be involved in the induction of hyporesponsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.