Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ~170 million individuals infected and current interferon-based treatment having toxic side-effects and marginal efficacy, more effective antivirals are critically needed1. Although HCV protease inhibitors were just FDA approved, analogous to HIV therapy, optimal HCV therapy likely will require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a promising multi-faceted target for antiviral intervention; however, to date FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-Like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection as silencing or antibody-mediated blocking of NPC1L1 impairs cell-cultured-derived HCV (HCVcc) infection initiation. In addition, the clinically-available FDA-approved NPC1L1 antagonist ezetimibe2,3 potently blocks HCV uptake in vitro via a virion cholesterol-dependent step prior to virion-cell membrane fusion. Importantly, ezetimibe inhibits infection of all major HCV genotypes in vitro, and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor, but also discovered a new antiviral target and potential therapeutic agent.
Summary It has been reported that the rho genes, which consist of a ras-related small GTPase protein family, regulate cytoskeletal structures and have the potential to transform cultured cells. To investigate the biological relevance of the rho genes in pancreatic carcinogenesis, we examined expressions of the rhoA, B and C genes by polymerase chain reaction after reverse transcription (RT-PCR) in 33 cases of ductal adenocarcinoma of the pancreas. In addition, mutations of the K-ras, rhoA, B and C genes were studied in the same series of tumour tissues to correlate with rho gene expressions. The expression levels of the rhoC gene were significantly higher in tumours than in non-malignant portions (P < 0.001). Metastatic lesions overexpressed the rhoC gene compared with primary tumours (P < 0.05). Carcinoma tissues with perineural invasion and lymph node metastasis exhibited significantly higher expressions of the rhoC gene than tumours without these manifestations (P < 0.001 and P < 0.05 respectively). Overexpression of the rhoC gene significantly correlated with poorer prognosis of patients with pancreatic adenocarcinoma (P < 0.05). In contrast, the expression levels of the rhoA and B genes showed no significant relationship with clinicopathological findings. Mutation was not found either in the rhoA, B or C gene sequences examined. K-ras gene mutation, detected in 27 out of 33 (81.8%) cases, did not affect the expression levels in any of the rho genes. These suggest that elevated expression of the rhoC gene may be involved in the progression of pancreatic carcinoma independent of K-ras gene activation.
infection is an important risk factor for hepatocellular carcinoma (HCC). Despite effective antiviral therapies, the risk for HCC is decreased but not eliminated after a sustained virologic response (SVR) to direct-acting antiviral (DAA) agents, and the risk is higher in patients with advanced fibrosis. We investigated HCV-induced epigenetic alterations that might affect risk for HCC after DAA treatment in patients and mice Gastroenterology 2019;156:2313-2329 BASIC AND TRANSLATIONAL LIVER with humanized livers. METHODS: We performed genomewide ChIPmentation-based ChIP-Seq and RNA-seq analyses of liver tissues from 6 patients without HCV infection (controls), 18 patients with chronic HCV infection, 8 patients with chronic HCV infection cured by DAA treatment, 13 patients with chronic HCV infection cured by interferon therapy, 4 patients with chronic hepatitis B virus infection, and 7 patients with nonalcoholic steatohepatitis in Europe and Japan. HCV-induced epigenetic modifications were mapped by comparative analyses with modifications associated with other liver disease etiologies. uPA/SCID mice were engrafted with human hepatocytes to create mice with humanized livers and given injections of HCV-infected serum samples from patients; mice were given DAAs to eradicate the virus. Pathways associated with HCC risk were identified by integrative pathway analyses and validated in analyses of paired HCC tissues from 8 patients with an SVR to DAA treatment of HCV infection. RESULTS:We found chronic HCV infection to induce specific genome-wide changes in H3K27ac, which correlated with changes in expression of mRNAs and proteins. These changes persisted after an SVR to DAAs or interferon-based therapies. Integrative pathway analyses of liver tissues from patients and mice with humanized livers demonstrated that HCV-induced epigenetic alterations were associated with liver cancer risk. Computational analyses associated increased expression of SPHK1 with HCC risk. We validated these findings in an independent cohort of patients with HCV-related cirrhosis (n ¼ 216), a subset of which (n ¼ 21) achieved viral clearance. CONCLUSIONS: In an analysis of liver tissues from patients with and without an SVR to DAA therapy, we identified epigenetic and gene expression alterations associated with risk for HCC. These alterations might be targeted to prevent liver cancer in patients treated for HCV infection.
H epatitis B virus (HBV) is a small enveloped DNA virus and causes chronic infection of the liver that often leads to chronic hepatitis, cirrhosis, and hepatocellular carcinoma. [1][2][3][4] The lack of a practical small animal model has impeded the study of the biology of this virus and the development of effective antiviral therapies. Chimpanzee is the only natural host that allows active replication of HBV. [5][6][7] Although this animal is a valuable model for the study of hepatitis viruses, 8 the practical use of chimpanzees is severely limited both ethically and economically.Several small animal models of HBV infection have been reported. The HBV transgenic mouse is a very useful model for the study of virology and evaluation of antiviral drugs. [9][10][11][12] However, the liver cells of this model are not permissive for HBV infection; therefore, studying virus-cell interactions such as receptor binding and entry is not possible. The HBVtrimera mouse is another useful mouse model. 13 In this model, ex vivo HBV-infected human liver fragments are implanted into lethally irradiated mice after SCID mouse bone marrow transplantation. Approximately 80% of the mice develop viremia 2 to 3 weeks after infection. However, the rate of positivity subsequently decreases to less than 20% 6 weeks after infection. The level viremia is approximately 10 5 copies/mL. More recently, HBV-containing human serum samples were used to infect human hepatocyte repopulated mice. 14 A high-level viremia (4.5 and 10 ϫ 10 8 copy/ mL) and HBs antigenemia are observed 8 weeks after injection. This mouse model is promising because HBV replicates in natural host cells, human hepatocytes. However,
Hepatitis C virus (HCV) infection affects an estimated 185 million people worldwide, with chronic infection often leading to liver cirrhosis and hepatocellular carcinoma. Although HCV is curable, there is an unmet need for the development of effective and affordable treatment options. Through a cell-based high-throughput screen, we identified chlorcyclizine HCl (CCZ), an over-the-counter drug for allergy symptoms, as a potent inhibitor of HCV infection. CCZ inhibited HCV infection in human hepatoma cells and primary human hepatocytes. The mode of action of CCZ is mediated by inhibiting an early stage of HCV infection, probably targeting viral entry into host cells. The in vitro antiviral effect of CCZ was synergistic with other anti-HCV drugs, including ribavirin, interferon-α, telaprevir, boceprevir, sofosbuvir, daclatasvir, and cyclosporin A, without significant cytotoxicity, suggesting its potential in combination therapy of hepatitis C. In the mouse pharmacokinetic model, CCZ showed preferential liver distribution. In chimeric mice engrafted with primary human hepatocytes, CCZ significantly inhibited infection of HCV genotypes 1b and 2a, without evidence of emergence of drug resistance, during 4 and 6 weeks of treatment, respectively. With its established clinical safety profile as an allergy medication, affordability, and a simple chemical structure for optimization, CCZ represents a promising candidate for drug repurposing and further development as an effective and accessible agent for treatment of HCV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.