Clinical and experimental studies have shown that sodium glucose co-transporter 2 inhibitors (SGLT2i) contribute to the prevention of diabetic kidney disease progression. In order to clarify its pharmacological effects on the molecular mechanisms underlying the development of diabetic kidney disease, we administered different doses of the SGLT2i, ipragliflozin, to type 2 diabetic mice. A high-dose ipragliflozin treatment for 8 weeks lowered blood glucose levels and reduced urinary albumin excretion. High- and low-dose ipragliflozin both inhibited renal and glomerular hypertrophy, and reduced NADPH oxidase 4 expression and subsequent oxidative stress. Analysis of glomerular phenotypes using glomeruli isolation demonstrated that ipragliflozin preserved podocyte integrity and reduced oxidative stress. Regarding renal tissue hypoxia, a short-term ipragliflozin treatment improved oxygen tension in the kidney cortex, in which SGLT2 is predominantly expressed. We then administered ipragliflozin to type 1 diabetic mice and found that high- and low-dose ipragliflozin both reduced urinary albumin excretion. In conclusion, we confirmed dose-dependent differences in the effects of ipragliflozin on early diabetic nephropathy in vivo. Even low-dose ipragliflozin reduced renal cortical hypoxia and abnormal hemodynamics in early diabetic nephropathy. In addition to these effects, high-dose ipragliflozin exerted renoprotective effects by reducing oxidative stress in tubular epithelia and glomerular podocytes.
Kidney hypertrophy is a common clinical feature in patients with diabetes and is associated with poor renal outcomes. Initial cell proliferation followed by cellular hypertrophy are considered the responsible mechanisms for diabetic kidney hypertrophy. However, whether similar responses against hyperglycemia continue in the chronic phase in diabetes is unclear. We performed lineage tracing analysis of proximal tubular epithelia using novel type 2 diabetic mice with a tamoxifen-inducible proximal tubule-specific fluorescent reporter. Clonal analysis of proximal tubular epithelia demonstrated that the labeled epithelia proliferated in type 2 diabetic mice. Based on the histological analysis and protein/DNA ratio of sorted labeled tubular epithelia, there was no evidence of cellular hypertrophy in type 2 diabetic mice. Lineage tracing and histological analyses of streptozocin-induced type 1 diabetes also revealed that cellular proliferation occurs in the chronic phase of type 1 diabetes induction. According to our study, epithelial proliferation accompanied by SGLT2 upregulation, rather than cellular hypertrophy, predominantly occurs in the hypertrophic kidney in both type 1 and type 2 diabetes. An increased number of SGLT2+ tubular epithelia may be an adaptive response against hyperglycemia, and linked to the hyper-reabsorption of sodium and glucose observed in type 2 diabetes patients.
Hypoparathyroidism, sensorineural deafness, and renal dysplasia (HDR) syndrome is a rare autosomal dominant disease caused by GATA3 mutations. Although several cases with variable renal features have been reported, the presence of histological changes within the glomeruli in adult patients is unclear. We herein report an adult case of HDR syndrome with a novel p.C288W (TGC>TGG) missense mutation in GATA3. His renal histology showed a membranoproliferative glomerulonephritis-like glomerular lesion. Additional renal histological analyses of HDR syndrome patients will be needed to clarify the role of GATA3 in both the developing and adult kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.