The CD45 transmembrane protein-tyrosine phosphatase (PTPase, EC 3.1.3.48) plays an essential role in T-cell activation by activating the Lck and/or Fyn proteintyrine kinases. However, numerous experiments have indicated that CD45 may have both mulatory and inhibitory roles in T-cell activation. Thus, it is unlikely that the two kinases are the sole substrates of the CD45 PTPase. Furthermore, the complex regulation of the alternative splicing of the extracellular domain in various leukocyte lineages also suggests additional roles for the CD45 PTPase. To identify such functions, it is necessary to identify physiologically relevant substrates of the CD45 PTPase other than the two protein-tyrosine kinases. To this end, we searched for high-affinity substrates of the CD45 VPTase among the tyrosine-phosphorylated T-cell proteins by using purified glutathione S-transferase-CD45 fusion molecules. The enzymatically inactive CD45 C828S mutant protein, in which the cysteine residue at the catalytic center was changed to a serine residue, bound tightly to the phosphorylated CD3 gchailn. This binding was specific to CD45 PTPase, as neither the leukocyte common antigen-related molecule (LAR) PTPase nor the CD45-LAR hybrid PTPases bound the phosphorylated CD3 S chain. Furthermore, phosphorylated CD3 C chain was preferentially dephosphorylated by the wild-type CD45 PTPase under conditions that did not significantly dephosphorylate other cellular proteins. Thus, the phosphorylated CD3 S chain is a specific and high-affinity substrate of the CD45 PTPase. These results suggest that CD45 is involved in the termination of the T-cell response via dephosphorylation of CD3 S chain.
A 350 amino acid soluble fragment of the intracellular catalytic domain of the human transmembrane leukocyte antigen related (LAR) protein tyrosine phosphatase has been purified 17-fold to greater than 90% purity from an Escherichia coli expression vector in quantities sufficient for kinetic and structural characterization. To assess substrate specificity, phosphotyrosine peptides corresponding to autophosphorylation sites of the two major classes of tyrosine kinases have been synthesized. Thus 6-12-residue phosphotyrosine peptides of the insulin receptor and epidermal growth factor receptor kinase domains and of the autophosphorylation and C-terminal regulatory sites of p60src and p56lck have been analyzed for kcat and KM by using a nonradioactive chromogenic assay for Pi release. The catalytic domain of LAR PTPase shows kcat values of 20-70 s-1 for phosphotyrosine peptides and affinities that vary 150-fold from 27 microM to 4.1 mM.
Sam68 (Src-associated in mitosis, 68 kDa), a nuclear RNA-binding protein, has been postulated to play a role in cell-growth control as a modulator of signal transduction and activation of RNA metabolism. Although Sam68 was demonstrated to bind to the UAAA sequences in synthetic oligoribonucleotides and poly(U) homopolymers in vitro, the legitimate cellular mRNA target remained unclear. By using the differential display and cDNA-representational difference analysis techniques, followed by reverse transcription polymerase chain reaction of RNAs co-immunoprecipitated with Sam68 from a HeLa cell lysate, we identified 10 mRNA species that bind in vivo to Sam68 in an RNA-binding domain-dependent manner. Among them, the mRNA species for hnRNP A2/B1 and beta-actin were found to bind prominently in vivo as well as in vitro, suggesting the possible involvement of Sam68 in the post- transcriptional regulation of these genes. Mapping of the Sam68-binding sequence revealed that Sam68 associates with these mRNAs through different nucleotide motifs, UAAA for hnRNP A2/B1 mRNA and UUUUUU for beta-actin mRNA, and that both binding sequences must reside in a loop structure for recognition by Sam68. The results indicated that Sam68 recognizes both the UAAA motif and poly(U) sequences in vivo for binding to cellular target mRNAs.
The cytoplasmic domains of two human transmembrane protein tyrosine phosphatases (PTPases), LAR and CD45, have been expressed in Escherichia coli, purified to near-homogeneity, and compared for catalytic efficiency toward several phosphotyrosine-containing peptide substrates. A 615-residue LAR fragment (LAR-D1D2) containing both tandemly repeated PTPase domains shows almost identical specific activity and high catalytic efficiency as the 40-kDa single-domain LAR-D1 fragment, consistent with a single functional active site in the 70-kDa LAR-D1D2 enzyme. A 90-kDa fragment of the human leukocyte CD45 PTPase, containing two similar tandemly repeated PTPase domains, shows parallel specificity to LAR-D1 and LAR-D1D2 with a high kcat/Km value for a phosphotyrosyl undecapeptide. Sufficient purified LAR-D1 and LAR-D1D2 PTPases were available to demonstrate enzymatic exchange of 18O from 18O4 inorganic phosphate into H2(16)O at rates of approximately 1 x 10(-2) s-1. The oxygen-18 exchange probably proceeds via a phosphoenzyme intermediate. Brief incubation of all three PTPase fragments with a [32P]phosphotyrosyl peptide substrate prior to quench with SDS sample buffer and gel electrophoresis led to autoradiographic detection of 32P-labeled enzymes. Pulse/chase studies on the LAR 32P-enzyme showed turnover of the labeled phosphoryl group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.