International audienceConstraining mantle deformation beneath plate boundaries where plates interact with each other, such as beneath active or halted mountain belts, is a particularly important objective of "mantle tectonics" that may bring a depth extent to the Earth's surface observation. Such mantle deformation can be mapped at scale lengths of several tens of kilometers through the analysis of seismological data and particularly by mapping seismic anisotropy from the splitting analysis of vertically-propagating SKS waves that largely reflect the strain-induced crystal preferred orientations of the rock-forming minerals within the upper mantle. In the present study, we analyse data from approximately 50 broadband seismic stations covering the Western Alps and we provide a coherent picture of upper mantle anisotropy beneath the belt. The large-scale anisotropy pattern is characterized by fast split directions that closely follow the trend of the belt. Moreover, the maximum anisotropy magnitude is not located beneath the internal zones of the belt but instead beneath external units. All suggests that the anisotropy is likely dominated by sublithospheric mantle deformation. We propose that the observed anisotropy pattern can be explained by recent or active mantle flow around the Eurasian slab presently plunging beneath the inner parts of the Alps
The instrument package SEIS (Seismic Experiment for Internal Structure) with the three very broadband and three short-period seismic sensors is installed on the surface on Mars as part of NASA's InSight Discovery mission. When compared to terrestrial installations, SEIS is deployed in a very harsh wind and temperature environment that leads to inevitable degradation of the quality of the recorded data. One ubiquitous artifact in the raw data is an abundance of transient one-sided pulses often accompanied by high-frequency spikes. These pulses, which we term "glitches", can be modeled as the response of the instrument to a step in acceleration, while the spikes can be modeled as the response to a simultaneous step in displacement. We attribute the glitches primarily to SEIS-internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the SEIS package as a whole caused by minuscule tilts of either the instrument or the ground. In this study, we focus on the analysis of the glitch+spike phenomenon and present how these signals can be automatically detected and removed from SEIS's raw data. As glitches affect many standard seismological analysis methods such as receiver functions, spectral decomposition and source inversions, we anticipate that studies of the Martian seismicity as well as studies of Mars' internal structure should benefit from deglitched seismic data. Plain Language Summary The instrument package SEIS (Seismic Experiment for Internal Structure) with two fully equipped seismometers is installed on the surface of Mars as part of NASA's InSight Discovery mission. When compared to terrestrial installations, SEIS is more exposed to wind and daily temperature changes that leads to inevitable degradation of the quality of the recorded data. One consequence is the occurrence of a specific type of transient noise that we term "glitch". Glitches show up in the recorded data as one-sided pulses and have strong implications for the typical seismic data analysis. Glitches can be understood as step-like changes in the acceleration sensed by the seismometers. We attribute them primarily to SEIS-internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the whole SEIS instrument. In this study, we focus on the detection and removal of glitches and anticipate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.