International audienceA complete modeling of heat and fluid flow applied to laser welding regimes is proposed. This model has been developed using only a graphical user interface of a finite element commercial code and can be easily usable in industrial R&D environments. The model takes into account the three phases of the matter: the vaporized metal, the liquid phase, and the solid base. The liquid/vapor interface is tracked using the Level-Set method. To model the energy deposition, a new approach is proposed which consists of treating laser under its wave form by solving Maxwell's equations. All these physics are coupled and solved simultaneously in Comsol Multyphysics®. The simulations show keyhole oscillations and the formation of porosity. A comparison of melt pool shapes evolution calculated from the simulations and experimental macrographs shows good correlation. Finally, the results of a three-dimensional simulation of a laser welding process are presented. The well-known phenomenon of humping is clearly shown by the model
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.