International audienceReactivation of structures inherited from previous collisional or rifting events, especially lithospheric-scale faults, is a major feature of plate tectonics. Its expression ranges from continental break-up along ancient collisional belts(1,2) to linear arrays of intraplate magmatism and seismicity(3,4). Here we use multiscale numerical models to show that this reactivation can result from an anisotropic mechanical behaviour of the lithospheric mantle due to an inherited preferred orientation of olivine crystals. We explicitly consider an evolving anisotropic viscosity controlled by the orientation of olivine crystals in the mantle. We find that strain is localized in domains where shear stresses on the inherited mantle fabric are high, and that this leads to shearing parallel to the inherited fabric. During rifting, structural reactivation induced by anisotropy results in oblique extension, followed by either normal extension or failure. Our results suggest that anisotropic viscosity in the lithospheric mantle controls the location and orientation of intraplate deformation zones that may evolve into new plate boundaries, and causes long-lived lithospheric-scale wrench faults, contributing to the toroidal component of plate motions on Earth
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.