Abstract. We develop an algorithm for brain connectivity assessment using geodesics in HARDI (high angular resolution diffusion imaging). We propose to recast the problem of finding fibers bundles and connectivity maps to the calculation of shortest paths on a Riemannian manifold defined from fiber ODFs computed from HARDI measurements. Several experiments on real data show that our method is able to segment fibers bundles that are not easily recovered by other existing methods.
An important issue in electroencephalography (EEG) experiments is to measure accurately the three dimensional (3D) positions of electrodes. We propose a system where these positions are automatically estimated from several images using computer vision techniques. Yet, only a set of undifferentiated points are recovered this way and remains the problem of labeling them, i.e. of finding which electrode corresponds to each point. This paper proposes a fast and robust solution to this latter problem based on combinatorial optimization. We design a specific energy that we minimize with a modified version of the Loopy Belief Propagation algorithm. Experiments on real data show that, with our method, a manual labeling of two or three electrodes only is sufficient to get the complete labeling of a 64 electrodes cap in less than 10 seconds. However, it is shown to be robust to missing electrodes in the reconstructed data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.