Aim: Establishment of ruminal bacterial community in dairy calves. Methods and Results: Rumen bacterial community was analysed on 6 calves bred according to commercial practices from day one to weaning at day 83 of age, using 454 16S rRNA-based pyrosequencing. Samples taken at day 1 did not produce amplicons. Analysis of data revealed a three-stage implantation process with a progressive but important shift of composition. At day 2, the bacterial community was mainly composed of Proteobacteria (70%) and Bacteroidetes (14%), and Pasteurellaceae was the dominant family (58%). The bacterial community abruptly changed between days 2 and 3, and until day 12, dominant genera were Bacteroides (21%), Prevotella (11%), Fusobacterium (5%) and Streptococcus (4%). From 15 to 83 days, when solid food intake rapidly increased, Prevotella became dominant (42%) and many genera strongly decreased or were no longer detected. A limited number of bacteria genera correlated with feed intake, rumen volatile fatty acids and enzymatic activities. Conclusion: The ruminal bacterial community is established before intake of solid food, but solid food arrival in turn shapes this community. Significance and Impact of the Study: This study provides insight into the establishment of calves' rumen bacterial community and suggests a strong effect of diet.
The objectives of this study were to characterize the establishment of ruminal fermentation and enzymatic activities in dairy calves from birth to weaning (d 83). Six Holstein calves, immediately separated from their mother at birth, were fed colostrum for 3 d after birth, and thereafter milk replacer, starter pelleted concentrate, and hay until d 83 of age. Ruminal samples were collected from each calf every day for the first 10 d, and additionally at d 12, 15, 19, 22, 26, 29, 33, 36, 40, 43, 47, 50, 55, 62, 69, and 83. Ruminal samples were collected 1h after milk feeding with a stomach tube. The pH and redox potential (E(h)) were immediately measured. Samples were kept for further determination of ammonia nitrogen (NH(3)-N) and volatile fatty acid (VFA) concentrations, and xylanase, amylase, urease, and protease activities. Ruminal pH averaged 6.69, 5.82, and 6.34, from d 1 to 9, d 10 to 40, and d 43 to 83 of age, respectively. At first day of life, the ruminal E(h) value was positive (+224 mV). From d 2 to 9, d 10 to 40, and d 43 to 83 of age, ruminal E(h) averaged -164, -115, and -141 mV, respectively. From d 1 to 3, d 4 to 22, and d 26 to 83 of age, NH(3)-N concentration averaged 60.1, 179.8, and 58.2 mg/L, respectively. No VFA were detected in ruminal samples collected on d 1 of life of calves. From d 2 to 10 and d 12 to 83 of age, ruminal total VFA concentration averaged 19.5 and 84.4mM, respectively. Neither ruminal xylanase or amylase activities were observed at d 1 of age. From d 5 to 15 and d 19 to 83 of age, the xylanase activity averaged 182.2 and 62.4 μmol of sugar released per hour per gram of ruminal content dry matter (DM), respectively. From d 5 to 83 of age, the amylase activity reached 35.4 μmol of sugar released per hour per gram of ruminal content DM. The ruminal ureolytic activity was observed with an average value of 6.9 μg of NH(3)-N released per minute per gram of ruminal content DM over the 83-d experimental period. From d 1 to 4 and d 5 to 83 of age, the proteolytic activity was 8.2 and 27.9 optical density units per hour per gram of ruminal content DM, respectively. The fermentative and enzymatic activities were rapidly established in the rumen from d 2 after birth. Most parameters did not evolve further after 1 mo of age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.