We describe our efforts of the past few years to create a large set of more than 500 highly accurate vertical excitation energies of various natures (π → π*, n → π*, double excitation, Rydberg, singlet, doublet, triplet, etc.) in small‐ and medium‐sized molecules. These values have been obtained using an incremental strategy which consists in combining high‐order coupled cluster and selected configuration interaction calculations using increasingly large diffuse basis sets in order to reach high accuracy. One of the key aspects of the so‐called QUEST database of vertical excitations is that it does not rely on any experimental values, avoiding potential biases inherently linked to experiments and facilitating theoretical cross comparisons. Following this composite protocol, we have been able to produce theoretical best estimates (TBEs) with the aug‐cc‐pVTZ basis set for each of these transitions, as well as basis set corrected TBEs (i.e., near the complete basis set limit) for some of them. The TBEs/aug‐cc‐pVTZ have been employed to benchmark a large number of (lower‐order) wave function methods such as CIS(D), ADC(2), CC2, STEOM‐CCSD, CCSD, CCSDR(3), CCSDT‐3, ADC(3), CC3, NEVPT2, and so on (including spin‐scaled variants). In order to gather the huge amount of data produced during the QUEST project, we have created a website (https://lcpq.github.io/QUESTDB_website) where one can easily test and compare the accuracy of a given method with respect to various variables such as the molecule size or its family, the nature of the excited states, the type of basis set, and so on. We hope that the present review will provide a useful summary of our effort so far and foster new developments around excited‐state methods. This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods
Quantum chemistry is a discipline which relies heavily on very expensive numerical computations. The scaling of correlated wave function methods lies, in their standard implementation, between and , where N is proportional to the system size. Therefore, performing accurate calculations on chemically meaningful systems requires (i) approximations that can lower the computational scaling and (ii) efficient implementations that take advantage of modern massively parallel architectures. Quantum Package is an open-source programming environment for quantum chemistry specially designed for wave function methods. Its main goal is the development of determinant-driven selected configuration interaction (sCI) methods and multireference second-order perturbation theory (PT2). The determinant-driven framework allows the programmer to include any arbitrary set of determinants in the reference space, hence providing greater methodological freedom. The sCI method implemented in Quantum Package is based on the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) algorithm which complements the variational sCI energy with a PT2 correction. Additional external plugins have been recently added to perform calculations with multireference coupled cluster theory and range-separated density-functional theory. All the programs are developed with the IRPF90 code generator, which simplifies collaborative work and the development of new features. Quantum Package strives to allow easy implementation and experimentation of new methods, while making parallel computation as simple and efficient as possible on modern supercomputer architectures. Currently, the code enables, routinely, to realize runs on roughly 2 000 CPU cores, with tens of millions of determinants in the reference space. Moreover, we have been able to push up to 12 288 cores in order to test its parallel efficiency. In the present manuscript, we also introduce some key new developments: (i) a renormalized second-order perturbative correction for efficient extrapolation to the full CI limit and (ii) a stochastic version of the CIPSI selection performed simultaneously to the PT2 calculation at no extra cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.