We purified, cloned, and expressed aggrecanase, a protease that is thought to be responsible for the degradation of cartilage aggrecan in arthritic diseases. Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)] is a member of the ADAMTS protein family that cleaves aggrecan at the glutamic acid-373-alanine-374 bond. The identification of this protease provides a specific target for the development of therapeutics to prevent cartilage degradation in arthritis.
The proteoglycan aggrecan is an important major component of cartilage matrix that gives articular cartilage the ability to withstand compression. Increased breakdown of aggrecan is associated with the development of arthritis and is considered to be catalyzed by aggrecanases, members of the ADAM-TS family of metalloproteinases. Four endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate the activities of functional matrix metalloproteinases (MMPs), enzymes that degrade most components of connective tissue, but no endogenous factors responsible for the regulation of aggrecanases have been found. We show here that the N-terminal inhibitory domain of TIMP-3, a member of the TIMP family that has functional properties distinct from other TIMPs, is a strong inhibitor of human aggrecanases 1 and 2, with K i values in the subnanomolar range. This truncated inhibitor, which lacks the C-terminal domain that is responsible for interactions with molecules other than active metalloproteinases, is produced at high yield by bacterial expression and folding from inclusion bodies. This provides a starting point for developing a biologically available aggrecanase inhibitor suitable for the treatment of arthritis.Tissue inhibitors of matrix metalloproteinases (TIMPs) 1 are important regulators of matrix metalloproteinases (MMPs) that participate in the degradation of the extracellular matrix (1). To date, four isoforms of TIMP have been identified in humans that are designated TIMP-1, -2, -3, and -4 (2); these are homologous in sequence and have similar secondary and tertiary structures including six well conserved disulfide bonds. Structural and functional studies of TIMP-1 and TIMP-2 (3-6) have shown that the full inhibitory activity of TIMPs resides in the N-terminal domain that is stabilized by three disulfide bonds. Inhibition studies with recombinant TIMPs have shown that each TIMP binds to MMPs with varying degrees of affinity, implicating that they have distinct functions in vivo (2, 7).TIMP-3 was originally discovered as a transformation-induced protein in chicken fibroblasts (8), which was later shown to have inhibitory activity against MMPs (9). In addition to its function as an inhibitor of MMPs, TIMP-3 has been reported to inhibit the shedding of cell surface-anchored molecules such as tumor necrosis factor-␣ receptor (10), L-selectin (11), interleukin 6 receptor (12), and syndecans-1 and -4 (13). The release of these molecules is thought to be catalyzed by membrane-bound ADAMs (a disintegrin and a metalloproteinase domain), multidomain proteins containing an N-terminal propeptide, a metalloproteinase, a disintegrin-like, a transmembrane, and a cytoplasmic domain. The primary structures of the metalloproteinase domains of the MMPs and the ADAMs have little sequence similarity except near the catalytic Zn 2ϩ -binding motif, HEXXHXXGXXH (14). Direct evidence for the apparently unique ability of TIMP-3 to inhibit a broad spectrum of metalloproteinases is provided by the demonstration of its inhibitory actio...
Aggrecan is responsible for the mechanical properties of cartilage. One of the earliest changes observed in arthritis is the depletion of cartilage aggrecan due to increased proteolytic cleavage within the interglobular domain. Two major sites of cleavage have been identified in this region at Asn 341 -Phe 342 and Glu 373 -Ala 374 . While several matrix metalloproteinases have been shown to cleave at Asn 341 -Phe 342 , an as yet unidentified protein termed "aggrecanase" is responsible for cleavage at Glu 373 -Ala 374 and is hypothesized to play a pivotal role in cartilage damage. We have identified and cloned a novel disintegrin metalloproteinase with thrombospondin motifs that possesses aggrecanase activity, ADAMTS11 (aggrecanase-2), which has extensive homology to ADAMTS4 (aggrecanase-1) and the inflammationassociated gene ADAMTS1. ADAMTS11 possesses a number of conserved domains that have been shown to play a role in integrin binding, cell-cell interactions, and extracellular matrix binding. We have expressed recombinant human ADAMTS11 in insect cells and shown that it cleaves aggrecan at the Glu 373 -Ala 374 site, with the cleavage pattern and inhibitor profile being indistinguishable from that observed with native aggrecanase. A comparison of the structure and expression patterns of ADAMTS11, ADAMTS4, and ADAMTS1 is also described. Our findings will facilitate the study of the mechanisms of cartilage degradation and provide targets to search for effective inhibitors of cartilage depletion in arthritic disease.Aggrecan is the major proteoglycan of cartilage and is responsible for its compressibility and stiffness. Aggrecan contains two N-terminal globular domains, G 1 and G 2 , separated by a proteolyticaly sensitive interglobular domain, followed by a glycosaminoglycan attachment region and a C-terminal globular domain (G 3 ). The G 1 domain of aggrecan interacts with hyaluronic acid and link protein to form large aggregates containing multiple aggrecan monomers that are trapped within the cartilage matrix. Cleavage of aggrecan has been shown to occur at Asn 341 -Phe 342 and Glu 373 -Ala 374 within the interglobular domain, with the cleaved aggrecan being free to exit the matrix since it lacks the G 1 domain, which is responsible for formation of the high molecular weight complexes. Results from several studies suggest that cleavage at the Glu 373 -Ala 374 site is responsible for the increased aggrecan degradation observed in inflammatory joint disease. Products resulting from cleavage at the Glu 373 -Ala 374 site have been shown to accumulate in cartilage explants and chondrocyte cultures treated with interleukin-1 and retinoic acid (1-5) and in the synovial fluid of patients with osteoarthritis and inflammatory joint disease (6, 7). While several characterized matrix metalloproteases 1 have been shown to cleave at the Asn 341 -Phe 342 site (8 -14), they are not responsible for the observed cleavage at Glu 373 -Ala 374 . A novel proteolytic activity, termed "aggrecanase," has been hypothesized to be respo...
Objective. Recent published studies have shown that cartilage from ADAMTS-5-knockout mice, but not ADAMTS-4-or ADAMTS-1-knockout mice, is significantly protected from degradation. The present study was undertaken to evaluate the respective roles of these enzymes in human cartilage breakdown, using a small interfering RNA (siRNA) approach to assess the effects of inhibition of each enzyme in normal and osteoarthritic (OA) explants.Methods. The activities of siRNA specifically targeting ADAMTS-1, -4, and -5 were assessed by transfection into primary human chondrocytes and cultured human cartilage explants. At 24 hours, a cytokine stimulus was applied to normal, but not OA, samples to initiate a catabolic response. At designated times, total RNA was isolated and gene expression was measured by quantitative real-time reverse transcription-polymerase chain reaction. Aggrecan release and aggrecanasegenerated neoepitope formation were determined by dye binding analysis and Western blotting, respectively.Results. Human chondrocytes and explants were efficiently transfected with siRNA that specifically decreased the expression of each targeted gene. Suppression of ADAMTS-4 and ADAMTS-5, individually or in combination, attenuated the degradation of aggrecan in cytokine-stimulated normal cartilage. A reduction in aggrecan degradation was also observed following siRNA-mediated knockdown of either gene in unstimulated OA cartilage. In contrast, knockdown of ADAMTS-1 failed to inhibit aggrecan loss.Conclusion. Despite the apparent dominant role of ADAMTS-5 in genetically modified mice, our data suggest that both ADAMTS-4 and ADAMTS-5 contribute to the structural damage that characterizes human OA.
(1) IL-1- and TNF-stimulated release of aggrecan was associated with cleavage of aggrecan within the C-terminus at the ADAM-TS4 and ADAM-TS5-sensitive sites, Glu(1480)-Gly(1481), Glu(1667)-Gly(1668), and Glu(1871)-Leu(1872). (2) The order of cleavage following IL-1 stimulation of cartilage explants was the same as when soluble aggrecan is digested with recombinant human ADAM-TS4 and ADAM-TS5. (3) Both constitutive and stimulated cleavage of aggrecan at the ADAM-TS4 and ADAM-TS5-sensitive sites in cartilage was blocked by a general metalloproteinase inhibitor but not by a MMP-specific inhibitor, and this inhibition correlated with inhibition of aggrecan release from cartilage. (4) PCR and Western blot analysis indicated that both ADAM-TS proteases are expressed in cartilage explants; ADAM-TS5 is constitutively expressed whereas ADAM-TS4 is induced following IL-1 and TNF treatment. (5) Immunodepletion of both ADAM-TS4 and ADAM-TS5 from bovine articular cartilage cultures following IL-1 stimulation resulted in a 90% reduction of aggrecanase activity in the culture medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.