Ultra-high frequency (UHF) electric installations, using the energy of UHF electromagnetic oscillations, can perform thermal UHF modification of dielectric materials and products. As a result, its properties and parameters change in an object processed in a UHF electromagnetic field faster and more uniformly than when the heat is transferred to a heated dielectric by thermal conductivity, convection, thermal radiation. The exact change in the properties and parameters of polymers of living and inanimate nature, uniform in volume and significantly in a shorter time spent in a UHF electromagnetic field, can be obtained in UHF electrical installations, and practically without heating the object as a result of the so-called non-thermal UHF modification. The paper proposes the design and design of a UHF electric installation with a hybrid-type working chamber. Such a working chamber makes it possible to simultaneously carry out non-thermal UHF modification of a polymer and thermal UHF modification of a dielectric in one installation. A UHF electric installation with a hybrid-type working chamber is cheaper. It takes up less space than two separate installations producing the same products with the same productivity.
As a source of alternative energy, solar energy has apparent advantages, including a renewable, inexhaustible, and environmentally friendly resource. However, it has not become widely spread in the Russian Federation. Among the disadvantages of using solar energy are high equipment cost, low efficiency of photovoltaic solar cells, the generated electrical energy instability. The spatio-temporal variability of solar access causes electrical energy instability. It is possible to increase solar photovoltaic plant efficiency by using a tracking system to change the plant sun's spatial orientation. The paper offers mathematical and simulation models of a solar photovoltaic plant with a solar tracking system that allows the plant to be automatically oriented to the sun by matching the production mode and the solar access level. The use of the azimuth plant control system on the sun will increase the power production of the solar PV plant by an average of 28%. The same value will increase by 40% when using the full plant control system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.