Yeast mutants defective in the translocation of soluble secretory proteins into the lumen of the endoplasmic reticulum (sec6l, sec62, sec63) are not impaired in the assembly and glycosylation of the type II membrane protein dipeptidylaminopeptidase B (DPAPB) or of a chimeric membrane protein consisting of the multiple membrane-spanning domain of yeast hydroxymethylglutaryl CoA reductase (HMG1) fused to yeast histidinol dehydrogenase (HIS4C). This chimera is assembled in wild-type or mutant cells such that the His4c protein is oriented to the ER lumen and thus is not available for conversion of cytosolic histidinol to histidine. Cells harboring the chimera have been used to select new translocation defective sec mutants. Temperature-sensitive lethal mutations defining two complementation groups have been isolated: a new allele of sec6l and a single isolate of a new gene sec65. The new isolates are defective in the assembly of DPAPB, as well as the secretory protein a-factor precursor. Thus, the chimeric membrane protein allows the selection of more restrictive sec mutations rather than defining genes that are required only for membrane protein assembly. The SEC61 gene was cloned, sequenced, and used to raise polyclonal antiserum that detected the Sec6l protein. The gene encodes a 53-kDa protein with five to eight potential membrane-spanning domains, and Sec6lp antiserum detects an integral protein localized to the endoplasmic reticulum membrane. Sec6lp appears to play a crucial role in the insertion of secretory and membrane polypeptides into the endoplasmic reticulum.
The cytosolic yeast proteins Sec13p-Sec31p, Sec23p-Sec24p, and the small GTP-binding protein Sar1p generate protein transport vesicles by forming the membrane coat termed COPII. We demonstrate by thin section and immunoelectron microscopy that purified COPII components form transport vesicles directly from the outer membrane of isolated yeast nuclei. Another set of yeast cytosolic proteins, coatomer and Arf1p (COPI), also form coated buds and vesicles from the nuclear envelope. Formation of COPI-coated, but not COPII-coated, buds and vesicles on the nuclear envelope is inhibited by the fungal metabolite brefeldin A. The two vesicle populations are distinct. However, both vesicle types are devoid of endoplasmic reticulum (ER) resident proteins, and each contains targeting proteins necessary for docking at the Golgi complex. Our data suggest that COPI and COPII mediate separate vesicular transport pathways from the ER.
Non-clathrin coated vesicles have been implicated in early steps of intercompartmental transport. A distinct set of coat proteins are peripherally associated with the exterior of purified mammalian intra-Golgi transport vesicles. The 'coatomer', a cytosolic complex containing a similar subunit composition to and sharing at least one subunit (beta-COP) with the coat found on vesicles, has been postulated to be the precursor of this non-clathrin coat. Here we describe the characterization of SEC21, an essential gene required for protein transport from the endoplasmic reticulum to the Golgi in the yeast Saccharomyces cerevisiae. The 105K product of this gene, Sec21p, participates in a cytosolic complex that we show to be a yeast homologue of the mammalian coatomer. These observations demonstrate that a non-clathrin coat protein plays an essential role in intercompartmental transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.