To determine precisely the brain areas from which descending neurons (DNs) originate, we examined the distribution of somata and dendrites of DNs in the cockroach brain by retrogradely filling their axons from the cervical connective. At least 235 pairs of somata of DNs were stained, and most of these were grouped into 22 clusters. Their dendrites were distributed in most brain areas, including lateral and medial protocerebra, which are major termination areas of output neurons of the mushroom body, but not in the optic and antennal lobes, the mushroom body, the central complex, or the posteroventral part of the lateral horn. The last area is the termination area of major types of olfactory projection neurons from the antennal lobe, i.e., uni- and macroglomerular projection neurons, so these neurons have no direct connections with DNs. The distribution of axon terminals of ascending neurons overlaps with that of DN dendrites. We propose, based on these findings, that there are numerous parallel processing streams from cephalic sensory areas to thoracic locomotory centers, many of which are via premotor brain areas from which DNs originate. In addition, outputs from the mushroom body, central complex, and posteroventral part of the lateral horn converge on some of the premotor areas, presumably to modulate the activity of some sensorimotor pathways. We propose, based on our results and documented findings, that many parallel processing streams function in various forms of reflexive and relatively stereotyped behaviors, whereas indirect pathways govern some forms of experience-dependent modification of behavior.
Sakura M, Lambrinos D, Labhart T. Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. J Neurophysiol 99: 667-682, 2008. First published December 5, 2007 doi:10.1152/jn.00784.2007. Many insects exploit skylight polarization for visual compass orientation or course control. As found in crickets, the peripheral visual system (optic lobe) contains three types of polarization-sensitive neurons (POL neurons), which are tuned to different (ϳ60°diverging) e-vector orientations. Thus each e-vector orientation elicits a specific combination of activities among the POL neurons coding any e-vector orientation by just three neural signals. In this study, we hypothesize that in the presumed orientation center of the brain (central complex) e-vector orientation is population-coded by a set of "compass neurons." Using computer modeling, we present a neural network model transforming the signal triplet provided by the POL neurons to compass neuron activities coding e-vector orientation by a population code. Using intracellular electrophysiology and cell marking, we present evidence that neurons with the response profile of the presumed compass neurons do indeed exist in the insect brain: each of these compass neuron-like (CNL) cells is activated by a specific e-vector orientation only and otherwise remains silent. Morphologically, CNL cells are tangential neurons extending from the lateral accessory lobe to the lower division of the central body. Surpassing the modeled compass neurons in performance, CNL cells are insensitive to the degree of polarization of the stimulus between 99% and at least down to 18% polarization and thus largely disregard variations of skylight polarization due to changing solar elevations or atmospheric conditions. This suggests that the polarization vision system includes a gain control circuit keeping the output activity at a constant level.
BackgroundTerritorial boundaries between conspecific social insect colonies are maintained through nestmate recognition systems. However, in supercolony-forming ants, which have developed an extraordinary social organization style known as unicoloniality, a single supercolony extends across large geographic distance. The underlying mechanism is considered to involve less frequent occurrence of intraspecific aggressive behaviors, while maintaining interspecific competition. Thus, we examined whether the supercolony-forming species, Formica yessensis has a nestmate recognition system similar to that of the multicolonial species, Camponotus japonicus with respect to the cuticular hydrocarbon-sensitive sensillum (CHC sensillum), which responds only to non-nestmate CHCs. We further investigated whether the sensory system reflects on the apparent reduced aggression between non-nestmates typical to unicolonial species.Methodology/Principal Findings F. yessensis constructs supercolonies comprising numerous nests and constitutes the largest supercolonies in Japan. We compared the within-colony or between-colonies’ (1) similarity in CHC profiles, the nestmate recognition cues, (2) levels of the CHC sensillar response, (3) levels of aggression between workers, as correlated with geographic distances between nests, and (4) their genetic relatedness. Workers from nests within the supercolony revealed a greater similarity of CHC profiles compared to workers from colonies outside it. Total response of the active CHC sensilla stimulated with conspecific alien CHCs did not increase as much as in case of C. japonicus, suggesting that discrimination of conspecific workers at the peripheral system is limited. It was particularly limited among workers within a supercolony, but was fully expressed for allospecific workers.Conclusions/SignificanceWe demonstrate that chemical discrimination between nestmates and non-nestmates in F. yessensis was not clear cut, probably because this species has only subtle intraspecific differences in the CHC pattern that typify within a supercolony. Such an incomplete chemical discrimination via the CHC sensilla is thus an important factor contributing to decreased occurrence of intraspecific aggressive behavior especially within a supercolony.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.