Prior studies have shown that a field-induced ferroelectricity in ceramics with general chemical formula (1−x−y)(Bi1/2Na1/2)TiO3-xBaTiO3-y(K0.5Na0.5)NbO3 and a very low remanent strain can produce very large piezoelectric strains. Here we show that both the longitudinal and transverse strains gradually change with applied electric fields even during the transition from the nonferroelectric to the ferroelectric state, in contrast to known Pb-containing antiferroelectrics. Hence, the volume change and, in turn, the phase transition can be affected using uniaxial compressive stresses, and the effect on ferroelectricity can thus be assessed. It is found that the 0.94(Bi1/2Na1/2)TiO3-0.05BaTiO3-0.01(K0.5Na0.5)NbO3ceramic (largely ferroelectric), with a rhombohedral R3c symmetry, displays large ferroelectric domains, significant ferroelastic deformation, and large remanent electrical polarizations even at a 250 MPa compressive stress. In comparison, the 0.91(Bi1/2Na1/2)TiO3-0.07BaTiO3-0.02(K0.5Na0.5)NbO3ceramic (largely nonferroelectric) possesses characteristics of a relaxor ferroelectricceramic, including a pseudocubic structure, limited ferroelastic deformation, and low remanent polarization. The results are discussed with respect of the proposed antiferroelectric nature of the nonferroelectric state. Prior studies have shown that a field-induced ferroelectricity in ceramics with general chemical formula ͑1−x − y͒͑Bi 1/2 Na 1/2 ͒TiO 3 -xBaTiO 3 -y͑K 0.5 Na 0.5 ͒NbO 3 and a very low remanent strain can produce very large piezoelectric strains. Here we show that both the longitudinal and transverse strains gradually change with applied electric fields even during the transition from the nonferroelectric to the ferroelectric state, in contrast to known Pb-containing antiferroelectrics. Hence, the volume change and, in turn, the phase transition can be affected using uniaxial compressive stresses, and the effect on ferroelectricity can thus be assessed. It is found that the 0.94͑Bi 1/2 Na 1/2 ͒TiO 3 -0.05BaTiO 3 -0.01͑K 0.5 Na 0.5 ͒NbO 3 ceramic ͑largely ferroelectric͒, with a rhombohedral R3c symmetry, displays large ferroelectric domains, significant ferroelastic deformation, and large remanent electrical polarizations even at a 250 MPa compressive stress. In comparison, the 0.91͑Bi 1/2 Na 1/2 ͒TiO 3 -0.07BaTiO 3 -0.02͑K 0.5 Na 0.5 ͒NbO 3 ceramic ͑largely nonferroelectric͒ possesses characteristics of a relaxor ferroelectric ceramic, including a pseudocubic structure, limited ferroelastic deformation, and low remanent polarization. The results are discussed with respect of the proposed antiferroelectric nature of the nonferroelectric state.
Electric-field-induced antiferroelectric to ferroelectric phase transition in mechanically confined Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3 AbstractThe electric-field-induced phase transition was investigated under mechanical confinements in bulk samples of an antiferroelectric perovskite oxide at room temperature. Profound impacts of mechanical confinements on the phase transition are observed due to the interplay of ferroelasticity and the volume expansion at the transition. The uniaxial compressive prestress delays while the radial compressive prestress suppresses it. The difference is rationalized with a phenomenological model of the phase transition accounting for the mechanical confinement. Keywords Aerospace Engineering Disciplines Ceramic Materials | Materials Science and Engineering | Structures and Materials CommentsThis article is from Physical Review B 81 (2010) The electric-field-induced phase transition was investigated under mechanical confinements in bulk samples of an antiferroelectric perovskite oxide at room temperature. Profound impacts of mechanical confinements on the phase transition are observed due to the interplay of ferroelasticity and the volume expansion at the transition. The uniaxial compressive prestress delays while the radial compressive prestress suppresses it. The difference is rationalized with a phenomenological model of the phase transition accounting for the mechanical confinement.
The ferroelastic properties of a hard acceptor‐doped lead zirconate titanate (PZT) ceramic are investigated between room temperature and 300°C. Comparison with a soft PZT shows that acceptor doping has a stronger influence on mechanically induced domain switching than on switching caused by electric fields. A quantitative analysis of spontaneous and remanent strain and polarization indicates that poling in the soft material is dominated by 180° domain processes, while non‐180° processes dominate the strain behavior. If the mechanical load exceeds a threshold level, the “hardening” effect of the acceptor doping vanishes, and hard and soft materials behave identically. The results are discussed based on the defect dipole model and the charge drift model for hardening and aging in acceptor‐doped ferroelectric ceramics.
Using <001>-oriented Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 ferroelectric single crystals as a model material, the impact of mechanical confinements on polarization hysteresis, coercive field, and remanent polarization of relaxor-based piezocrystals is investigated. Comparative studies are made among rhombohedral and tetragonal single crystals, as well as a polycrystalline ceramic, under uniaxial and radial compressive prestresses. The dramatic changes observed are interpreted in terms of the piezoelectric effect and possible phase transitions for rhombohedral crystals, and ferroelastic domain switching and the piezoelectric effect for tetragonal crystals. Under radial compressive stresses, the coercive field for the rhombohedral crystal is observed to increase to 0.67 kV/mm and that for the tetragonal crystal is increased to 0.78 kV/mm. This is a 200% increase relative to the unstressed condition. The results demonstrate a general and effective approach to overcome the drawback of low coercive fields in these relaxor-based ferroelectric crystals, which could help facilitate widespread implementation of these piezocrystals in engineering devices. KeywordsPiezoelectric single crystals, compressive pre-stresses, domain switching, coercive field, remanent polarization
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.