Mitochondrial genetic variations were used to investigate the relationships between two Japanese wild boars, Japanese wild boar (Sus scrofa leucomystax) and Ryukyu wild boar (S.s. riukiuanus). Nucleotide sequences of the control (27 haplotypes) and cytochrome b (cyt-b) regions (19 haplotypes) were determined from 59 Japanese wild boars, 13 Ryukyu wild boars and 22 other boars and pigs. From phylogenetic analyses, the mtDNA of Ryukyu wild boar has a distinct lineage from that of Japanese wild boar, which was classified into the Asian pig lineage. This result suggests that the Ryukyu wild boar has a separate origin from the Japanese wild boar.
Convergent evolution of echinoderm pluteus larva was examined from the standpoint of functional evolution of a transcription factor Ets1/2. In sea urchins, Ets1/2 plays a central role in the differentiation of larval skeletogenic mesenchyme cells. In addition, Ets1/2 is suggested to be involved in adult skeletogenesis. Conversely, in starfish, although no skeletogenic cells differentiate during larval development, Ets1/2 is also expressed in the larval mesoderm. Here, we confirmed that the starfish Ets1/2 is indispensable for the differentiation of the larval mesoderm. This result led us to assume that, in the common ancestors of echinoderms, Ets1/2 activates the transcription of distinct gene sets, one for the differentiation of the larval mesoderm and the other for the development of the adult skeleton. Thus, the acquisition of the larval skeleton involved target switching of Ets1/2. Specifically, in the sea urchin lineage, Ets1/2 activated a downstream target gene set for skeletogenesis during larval development in addition to a mesoderm target set. We examined whether this heterochronic activation of the skeletogenic target set was achieved by the molecular evolution of the Ets1/2 transcription factor itself. We tested whether starfish Ets1/2 induced skeletogenesis when injected into sea urchin eggs. We found that, in addition to ectopic induction of mesenchyme cells, starfish Ets1/2 can activate some parts of the skeletogenic pathway in these mesenchyme cells. Thus, we suggest that the nature of the transcription factor Ets1/2 did not change, but rather that some unidentified co-factor(s) for Ets1/2 may distinguish between targets for the larval mesoderm and for skeletogenesis. Identification of the co-factor(s) will be key to understanding the molecular evolution underlying the evolution of the pluteus larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.