The present study provided detailed information on the intensive antimicrobial use in the white veal industry. Reduction can only be achieved by reducing the number of oral group treatments.
BackgroundMortality and morbidity are hardly documented in the white veal industry, despite high levels of antimicrobial drug use and resistance. The objective of the present study was to determine the causes and epidemiology of morbidity and mortality in dairy, beef and crossbred white veal production. A total of 5853 calves, housed in 15 production cohorts, were followed during one production cycle. Causes of mortality were determined by necropsy. Morbidity was daily recorded by the producers.ResultsThe total mortality risk was 5,3% and was significantly higher in beef veal production compared to dairy or crossbreds. The main causes of mortality were pneumonia (1.3% of the calves at risk), ruminal disorders (0.7%), idiopathic peritonitis (0.5%), enterotoxaemia (0.5%) and enteritis (0.4%). Belgian Blue beef calves were more likely to die from pneumonia, enterotoxaemia and arthritis. Detection of bovine viral diarrhea virus at necropsy was associated with chronic pneumonia and pleuritis. Of the calves, 25.4% was treated individually and the morbidity rate was 1.66 cases per 1000 calf days at risk. The incidence rate of respiratory disease, diarrhea, arthritis and otitis was 0.95, 0.30, 0.11 and 0.07 cases per 1000 calf days at risk respectively. Morbidity peaked in the first three weeks after arrival and gradually declined towards the end of the production cycle.ConclusionsThe present study provided insights into the causes and epidemiology of morbidity and mortality in white veal calves in Belgium, housed in the most frequent housing system in Europe. The necropsy findings, identified risk periods and differences between production systems can guide both veterinarians and producers towards the most profitable and ethical preventive and therapeutic protocols.
BackgroundLittle is known on the effects of common calf diseases on mortality and carcass traits in the white veal industry (special-fed veal), a highly integrated production system, currently criticized for the intensive pro- and metaphylactic use of antimicrobials. The objective of the present study was to determine the impact of bovine respiratory disease (BRD), diarrhea, arthritis and otitis on the economically important parameters of mortality, hot carcass weight (HCW), carcass quality, fat cover and meat color. For this purpose, a prospective study on 3519 white veal calves, housed in 10 commercial herds, was conducted. Case definitions were based on clinical observation by the producers and written treatment records were used.ResultsCalves received oral antimicrobial group treatments in the milk during 25.2% of the production time on average. With an increasing percentage of the production cycle spent on oral antimicrobials, HCW reduced, whereas the odds for insufficient fat cover or an undesirable red meat color both decreased. Of the calves, 14.8%, 5.3%, 1.5% and 1.6% were individually diagnosed and treated for BRD, diarrhea, arthritis and otitis, respectively. Overall, 5.7% of the calves died and the mortality risk was higher in the first weeks after arrival. Calves that experienced one BRD episode showed a 8.2 kg reduction in HCW, a lower fat cover and an increased mortality risk (hazard ratio (HR) = 5.5), compared to calves which were not individually diagnosed and treated for BRD. With an increasing number of BRD episodes, these losses increased dramatically. Additionally, calves, which experienced multiple BRD episodes, were more likely to have poor carcass quality and an undesirable red meat color at slaughter. Arthritis increased the mortality risk (HR = 3.9), and reduced HCW only when associated with BRD. Otitis did only increase the mortality risk (HR = 7.0). Diarrhea severely increased the mortality risk (HR = 11.0), reduced HCW by 9.2 kg on average and decreased carcass quality.ConclusionsDespite the massive use of group and individual treatments to alleviate the most prevalent health issues at the fattening period, the effects of BRD, diarrhea, otitis and arthritis on survival and performance are still considerable, especially in cases of chronic pneumonia with or without arthritis. Controlling calf health by effective preventive and therapeutic strategies and in particular the prevention of chronic BRD is key for the profitability of veal operations.
BackgroundDrivers of change in dairy herd health management include the significant increase in herd/farm size, quota removal (within Europe) and the increase in technologies to aid in dairy cow reproductive management.Main bodyThere are a number of key areas for improving fertility management these include: i) handling of substantial volumes of data, ii) genetic selection (including improved phenotypes for use in breeding programmes), iii) nutritional management (including transition cow management), iv) control of infectious disease, v) reproductive management (and automated systems to improve reproductive management), vi) ovulation / oestrous synchronisation, vii) rapid diagnostics of reproductive status, and viii) management of male fertility. This review covers the current status and future outlook of many of these key factors that contribute to dairy cow herd health and reproductive performance.ConclusionsIn addition to improvements in genetic trends for fertility, numerous other future developments are likely in the near future. These include: i) development of new and novel fertility phenotypes that may be measurable in milk; ii) specific fertility genomic markers; iii) earlier and rapid pregnancy detection; iv) increased use of activity monitors; v) improved breeding protocols; vi) automated inline sensors for relevant phenotypes that become more affordable for farmers; and vii) capturing and mining multiple sources of “Big Data” available to dairy farmers. These should facilitate improved performance, health and fertility of dairy cows in the future.
The objective of the present research was to determine the insulin response of the glucose and fatty acid metabolism in dry dairy cows with a variable body condition score (BCS). Ten pregnant Holstein Friesian dairy cows (upcoming parity 2 to 5) were selected based on BCS at the beginning of the study (2mo before expected parturition date). During the study, animals were monitored weekly for BCS and backfat thickness and in the last 2wk, blood samples were taken for determination of serum nonesterified fatty acid (NEFA) concentration. Animals underwent a hyperinsulinemic euglycemic clamp test in the third week before the expected parturition date. The hyperinsulinemic euglycemic clamp test consisted of 4 consecutive insulin infusions with increasing insulin doses: 0.1, 0.5, 2, and 5mIU/kg per minute. For each insulin infusion period, a steady state was defined as a period of 30min where no or minor changes of the glucose infusion were necessary to keep the blood glucose concentration constant and near basal levels. During the steady state, the glucose infusion rate [steady state glucose infusion rate (SSGIR) in µmol/kg per minute] and NEFA concentration [steady state NEFA concentration (SSNEFA) in mmol/L] were determined and reflect the insulin response of the glucose and fatty acid metabolism. Dose response curves were created based on the insulin concentrations during the steady state and the SSGIR or SSNEFA. The shape of the dose response curves is determined by the concentration of insulin needed to elicit the half maximal effect (EC50) and the maximal SSGIR or the minimal SSNEFA for the glucose or fatty acid metabolism, respectively. The maximal SSGIR was negatively associated with variables reflecting adiposity of the cows (BCS, backfat thickness, NEFA concentration during the dry period, and absolute weight of the different adipose depots determined after euthanasia and dissection of the different depots), whereas the EC50 of the glucose metabolism was positively associated with these variables. These results reflect a decreased insulin sensitivity and a decreased insulin responsiveness of the glucose metabolism in overconditioned dry dairy cows. The minimal SSNEFA and the EC50 of the fatty acid metabolism were not associated with variables reflecting adiposity of the cows, meaning that the insulin response of the fatty acid metabolism was not associated with the level of fat accumulation in dry dairy cows. Additionally, within individual cows, the EC50 of the glucose metabolism was higher than the EC50 of the fatty acid metabolism, meaning that the response of the fatty acid metabolism occurs at lower insulin concentrations compared with the response of the glucose metabolism. It can be concluded that a negative association exists between the level of fat accumulation in pregnant dairy cows at the end of the dry period and the insulin response of the glucose metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.