The implementation of the Covid-19 vaccination carried out by Indonesian government was ignited pros and contras among the public. Certainly, there will be pros and cons about the vaccination from the community. This attituded of pros and cons, which is also called sentiment, can influence people to accept or refuse to be vaccinated. Todays, people express their sentiment in social media in comments, post, or status. One of the methods used to detect sentiment on social media, whether positive or negative, is through a categorisation of text approach. This research provides a deep learning technique for sentiment classification on Twitter that uses Long Short Term Memory (LSTM), for positive, neutral and negative classes. The word2vec word embeddings was used as input, using the pretrained Bahasa Indonesia model from Wikipedia corpus. On the other hand, the topic-based word2vec model was also trained from the Covid-19 vaccination sentiment dataset which collected from Twitter. The data used after balanced is 2564 training data, 778 data validation data, and 400 test data with 1802 neutral data, 1066 negative data, and 566 positive data. The best results from various parameter processes give an F1-Score value of 54% on the test data, with an accuracy of 66%. The result of this research is a model that can classify sentiments with new sentences.
Pemekaran wilayah berpotensi menimbulkan kemajuan atau kemunduran bagi suatu daerah karena pemekaran wilayah bersifat rentan dalam tahapan perkembangan pemerintahan daerah. Berbagai studi menunjukkan bahwa dalam konteks pemekaran, peningkatan kesejahteraan menyiratkan berbagai permasalahan dalam implementasi kebijakan otonomi daerah. Untuk itu dalam penelitian ini penulis mengambil sampel daerah propinsi Riau yang telah mengalami beberapa kali pemekaran daerah khususnya daerah Kabupaten Rokan Hulu, sebagai daerah pemekaran dari Kabupaten Kampar. Penelitian ini adalah penelitian filed research dengan pendekatan doctrinal research dimana kajian kepustakaan menjadi data primerdalam bentuk indikator kesejahteraan masyarakat. Pengumpulan data dilakukan dengan wawancara dan studi dokumentasi. Melalui penelitian ini ditemukan bahwa kabupaten Rokan Hulu pasca Reformasi telah berkembang menjadi daerah yang tidak hanya mampu menyusul berbagai indicator kesejahteraan dari wilayah induknya kabupaten Kampar namun juga bahkan akulturasi budaya masyarakat pendatang telah menempatkan kabupaten ini menjadi mandiri.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.