Background In this cross-national study, Spanish, Finnish, and Swedish middle and high school students’ procedural flexibility was examined, with the specific intent of determining whether and how students’ equation-solving accuracy and flexibility varied by country, age, and/or academic track. The 791 student participants were asked to solve twelve linear equations, provide multiple strategies for each equation, and select the best strategy from among their own strategies. Results Our results indicate that knowledge and use of the standard algorithm for solving linear equations is quite widespread across students in all three countries, but that there exists substantial within-country variation as well as between-country variation in students’ reliance on standard vs. situationally appropriate strategies. In addition, we found correlations between equation-solving accuracy and students’ flexibility in all three countries but to different degrees. Conclusions Although it is increasingly recognized as an important construct of interest, there are many aspects of mathematical flexibility that are not well-understood. Particularly lacking in the literature on flexibility are studies that explore similarities and differences in students’ repertoire of strategies for solving algebra problems across countries with different educational systems and curricula. This study yielded important insights about flexibility and can push the field to explore the extent that within- and between-country differences in flexibility can be linked to differences in countries’ educational systems, teaching practices, and/or cultural norms around mathematics teaching and learning.
The automatic determination of geometric loci is an important issue in Dynamic Geometry. In Dynamic Geometry systems, it is often the case that locus determination is purely graphical, producing an output that is not robust enough and not reusable by the given software. Parts of the true locus may be missing, and extraneous objects can be appended to it as side products of the locus determination process. In this paper, we propose a new method for the computation, in dynamic geometry, of a locus defined by algebraic conditions. It
Abstract. GLI (Geometric Locus Identifier), an open web-based tool to determine equations of geometric loci specified using Cabri Geometry and The Geometer's Sketchpad, is described. A geometric construction of a locus is uploaded to a Java Servlet server, where two computer algebra systems, CoCoA and Mathematica, following the Groebner basis method, compute the locus equation and its graph. Moreover, an OpenMath description of the geometric construction is given. GLI can be efficiently used in mathematics education, as a supplement of the locus functions of the standard dynamic geometry systems. The system is located at
This cross-national study examined students' evaluation of strategies for solving linear equations, as well as the extent to which their evaluation criteria were related to their use of strategies and/or aligned with experts' views about which strategy is the best. A total of 792 middle school and high school students from Sweden, Finland, and Spain participated in the study. Students were asked to solve twelve equations, provide multiple solving strategies for each equation, and select the best strategy among those they produced for each equation. Our results indicate that students' evaluation of strategies was not strongly related to their initial preferences for using strategies. Instead, many students' criteria were aligned with the flexibility goals, in that a strategy that takes advantages of task context was more highly valued than a standard algorithm. However, cross-national differences in strategy evaluation indicated that Swedish and Finnish students were more aligned with flexibility goals in terms of their strategy evaluation criteria, while Spanish students tended to consider standard algorithms better than other strategies. We also found that high school students showed more flexibility concerns than middle school students. Different emphases in educational practice and prior knowledge might explain these cross-national differences as well as the findings of developmental changes in students' evaluation criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.