Both classical and quantum waves can form vortices: with helical phase fronts and azimuthal current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translate theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.
We give an exact self-consistent operator description of the spin and orbital angular momenta, position, and spin-orbit interactions of nonparaxial light in free space. Both quantum-operator formalism and classical energy-flow approach are presented. We apply the general theory to symmetric and asymmetric Bessel beams exhibiting spin-and orbital-dependent intensity profiles. The exact wave solutions are clearly interpreted in terms of the Berry phases, quantization of caustics, and Hall effects of light, which can be readily observed experimentally
We explore the behavior of a class of fully correlated optical beams that span the entire surface of the Poincaré sphere. The beams can be constructed from a coaxial superposition of a fundamental Gaussian mode and a spiral-phase Laguerre-Gauss mode having orthogonal polarizations. When the orthogonal polarizations are right and left circular, the coverage extends from one pole of the sphere to the other in such a way that concentric circles on the beam map onto parallels on the Poincaré sphere and radial lines map onto meridians. If the beam waist parameters match, the map is stereographic and the beam propagation corresponds to a rigid rotation about the pole. We present an experimental example of how a symmetrically stressed window can produce these beams and show that the predicted rotation indeed occurs when moving through the beams' focus.
We present a general theory of spin-to-orbital angular momentum (AM) conversion of light in focusing, scattering, and imaging optical systems. Our theory employs universal geometric transformations of non-paraxial optical fields in such systems and allows for direct calculation and comparison of the AM conversion efficiency in different physical settings. Observations of the AM conversions using local intensity distributions and far-field polarimetric measurements are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.