Zika virus (ZIKV) was first isolated in 1947. From its isolation until 2007, symptoms of ZIKV-caused disease were limited (e.g., fever, hives, and headache); however, during the epidemic in Brazil in 2014, ZIKV infection caused Guillain-Barré syndrome in adults and microcephaly in fetuses and infants of women infected during pregnancy. The neurovirulence of ZIKV has been studied using neural progenitor cells (NPCs), brain organoids, neurons, and astrocytes. NPCs and astrocytes appear to be the most susceptible cells of the Central Nervous System to ZIKV infection. In this work, we aimed to develop a culture of astrocytes derived from a human NPC cell line. We analyze how ZIKV affects human astrocytes and demonstrate that 1) ZIKV infection reduces cell viability, increases the production of Reactive Oxygen Species (ROS), and results in high viral titers; 2) there are changes in the expression of genes that facilitate the entry of the virus into the cells; 3) there are changes in the expression of genes involved in the homeostasis of the glutamatergic system; and 4) there are ultrastructural changes in mitochondria and lipid droplets associated with production of virions. Our findings reveal new evidence of how ZIKV compromises astrocytic functionality, which may help understand the pathophysiology of ZIKV-associated congenital disease.
The genome of Alphaviruses can be modified to produce self-replicating RNAs and virus-like particles, which are useful virological tools. In this work, we generated three plasmids for the transfection of mammalian cells: an infectious clone of Chikungunya virus (CHIKV), one that codes for the structural proteins (helper plasmid), and another one that codes nonstructural proteins (replicon plasmid). All of these plasmids contain a reporter gene (mKate2). The reporter gene in the replicon RNA and the infectious clone are synthesized from subgenomic RNA. Co-transfection with the helper and replicon plasmids has biotechnological/biomedical applications because they allow for the delivery of self-replicating RNA for the transient expression of one or more genes to the target cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.