Conventional theory predicts that ultrahigh lattice thermal conductivity can only occur in crystals composed of strongly bonded light elements, and that it is limited by anharmonic three-phonon processes. We report experimental evidence that departs from these long-held criteria. We measured a local room-temperature thermal conductivity exceeding 1000 watts per meter-kelvin and an average bulk value reaching 900 watts per meter-kelvin in bulk boron arsenide (BAs) crystals, where boron and arsenic are light and heavy elements, respectively. The high values are consistent with a proposal for phonon-band engineering and can only be explained by higher-order phonon processes. These findings yield insight into the physics of heat conduction in solids and show BAs to be the only known semiconductor with ultrahigh thermal conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.