Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.
Schwanniomyces occidentalis invertase is an extracellular enzyme that hydrolizes sucrose and releases -fructose from various oligosaccharides and essential storage fructan polymers such as inulin. We report here the three-dimensional structure of Sw. occidentalis invertase at 2.9 Å resolution and its complex with fructose at 1.9 Å resolution. The monomer presents a bimodular arrangement common to other GH32 enzymes, with an N-terminal 5-fold -propeller catalytic domain and a C-terminal -sandwich domain for which the function has been unknown until now. However, the dimeric nature of Sw. occidentalis invertase reveals a unique active site cleft shaped by both subunits that may be representative of other yeast enzymes reported to be multimeric. Binding of the tetrasaccharide nystose and the polymer inulin was explored by docking analysis, which suggested that medium size and long substrates are recognized by residues from both subunits. The identified residues were mutated, and the enzymatic activity of the mutants against sucrose, nystose, and inulin were investigated by kinetic analysis. The replacements that showed the largest effect on catalytic efficiency were Q228V, a residue putatively involved in nystose and inulin binding, and S281I, involved in a polar link at the dimer interface. Moreover, a significant decrease in catalytic efficiency against inulin was observed in the mutants Q435A and Y462A, both located in the -sandwich domain of the second monomer. This highlights the essential function that oligomerization plays in substrate specificity and assigns, for the first time, a direct catalytic role to the supplementary domain of a GH32 enzyme.Fructans, the fructose-rich polymers derived biosynthetically from sucrose, are important storage oligosaccharides and polysaccharides in many bacteria and fungi and numerous plant species. Furthermore, sucrose is one of the most widespread disaccharides in nature and is especially ubiquitous in higher plants as the first free sugar resulting from photosynthesis. It is the major transport compound to bring energy and carbon skeletons from source to sink tissues. Carbohydrate partitioning and sugar sensing are intimately connected to sucrose metabolism; these processes are vital throughout plant development. Therefore, the enzymes involved in fructans and sucrose processing are essential to plant cell metabolism.The enzymes that hydrolyze sucrose are referred to collectively as invertases or -fructofuranosidases (EC 3.2.1.26) and catalyze the release of -fructose from the nonreducing end of various -D-fructofuranoside substrates (Fig. 1). The cleavage of the -glycosidic bond is carried out by a double displacement catalytic mechanism that retains the configuration of the fructose anomeric carbon, two conserved residues, an aspartic and a glutamic acid, being the nucleophile and the general acid-base catalyst, respectively. On the basis of the amino acid sequences (1) they are classified into family 32 of the glycosylhydrolases (GH32), 3 which are included in...
beta-Fructofuranosidases are powerful tools in industrial biotechnology. We have characterized an extracellular beta-fructofuranosidase from the yeast Schwanniomyces occidentalis. The enzyme shows broad substrate specificity, hydrolyzing sucrose, 1-kestose, nystose and raffinose, with different catalytic efficiencies (k(cat)/K(m)). Although the main reaction catalysed by this enzyme is sucrose hydrolysis, it also produces two fructooligosaccharides (FOS) by transfructosylation. A combination of (1)H, (13)C and 2D-NMR techniques shows that the major product is the prebiotic trisaccharide 6-kestose. The 6-kestose yield obtained with this beta-fructofuranosidase is, to our concern, higher than those reported with other 6-kestose-producing enzymes, both at the kinetic maximum (76gl(-1)) and at reaction equilibrium (44gl(-1)). The total FOS production in the kinetic maximum was 101gl(-1), which corresponded to 16.4% (w/w) referred to the total carbohydrates in the reaction mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.