These findings confirm anticipation as a true biological phenomenon, also in FAP ATTRV30M. Acknowledgment of anticipation may have important clinical implications in genetic counselling of offspring and in follow-up of mutation carriers.
Familial amyloid polyneuropathy (FAP) ATTRV30M is a neurodegenerative disorder due to point mutations in the transthyretin gene, with V30M being the commonest. FAP ATTRV30M shows a wide variation in age at onset (AO) between clusters, families and generations. Portuguese patients also show remarkable AO differences between genders. Genes found to be associated with FAP ATTRV30M pathways may act as AO modifiers. Our aim was to further explore the role of APCS and RBP4 genes and to study for the first time the involvement of sex-linked genetic modifiers -AR and HSD17B1 genes -in AO variation in Portuguese families. We collected DNA from a sample of 318 patients, currently under follow-up. A total of 18 tagging SNPs from APCS, RBP4, AR and HSD17B1 and 5 additional SNPs from APCS and RBP4 previously studied were genotyped. To account for nonindependency of AO between members of the same family, we used generalized estimating equations (GEEs). We found that APCS and RBP4 were associated with late AO. In addition, rs11187545 of the RBP4 was associated with an early AO. For the AR, in the male group three SNPs were associated with an early AO, whereas in the female group four were associated with both an early and later AO. These results strengthened the role of APCS and RBP4 genes and revealed for the first time the contribution of AR genes as an AO modifier in both males and females. These findings may have important implications in genetic counseling and for new therapeutic strategies.
Tooth agenesis affects 20% of the world population, and maxillary lateral incisors agenesis (MLIA) is one of the most frequent subtypes, characterized by the absence of formation of deciduous or permanent lateral incisors. Odontogenesis is a complex mechanism regulated by sequential and reciprocal epithelial-mesenchymal interactions, controlled by activators and inhibitors involved in several pathways. Disturbances in these signaling cascades can lead to abnormalities in odontogenesis, resulting in alterations in the formation of the normal teeth number. Our aim was to study a large number of genes encoding either transcription factors or key components in signaling pathways shown to be involved in tooth odontogenesis. We selected 8 genes-MSX1, PAX9, AXIN2, EDA, SPRY2, TGFA, SPRY4, and WNT10A-and performed one of the largest case-control studies taking into account the number of genes and variants assessed, aiming at the identification of MLIA susceptibility factors. We show the involvement of PAX9, EDA, SPRY2, SPRY4, and WNT10A as risk factors for MLIA. Additionally, we uncovered 3 strong synergistic interactions between MLIA liability and MSX1-TGFA, AXIN2-TGFA, and SPRY2-SPRY4 gene pairs. We report the first evidence of the involvement of sprouty genes in MLIA susceptibility. This large study results in a better understanding of the genetic components and mechanisms underlying this trait.
Mutations in the microtubule-associated protein tau ( MAPT ) underlie multiple neurodegenerative disorders, yet the pathophysiological mechanisms are unclear. A novel variant in MAPT resulting in an alanine to threonine substitution at position 152 (A152T tau) has recently been described as a significant risk factor for both frontotemporal lobar degeneration and Alzheimer’s disease. Here we use complementary computational, biochemical, molecular, genetic and imaging approaches in Caenorhabditis elegans and mouse models to interrogate the effects of the A152T variant on tau function. In silico analysis suggests that a threonine at position 152 of tau confers a new phosphorylation site. This finding is borne out by mass spectrometric survey of A152T tau phosphorylation in C. elegans and mouse. Optical pulse-chase experiments of Dendra2-tau demonstrate that A152T tau and phosphomimetic A152E tau exhibit increased diffusion kinetics and the ability to traverse across the axon initial segment more efficiently than wild-type (WT) tau. A C. elegans model of tauopathy reveals that A152T and A152E tau confer patterns of developmental toxicity distinct from WT tau, likely due to differential effects on retrograde axonal transport. These data support a role for phosphorylation of the variant threonine in A152T tau toxicity and suggest a mechanism involving impaired retrograde axonal transport contributing to human neurodegenerative disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.