Given the need of implementing methodologies in industry for the reduction of the energy consumption costs, it is required to create modelling methodologies that, together with the use of new technologies, will allow identifying energy consumption models based on input-output data. These models will later be used to design a suitable model-based control strategy. In this paper, a subspace identification algorithm based on the RQ decomposition approach has been reported, which is both implemented and validated on a test-bench that emulates the energy consumption of an industrial machine within a manufacturing process. Subsequently, the resultant model fitting when using the proposed modelling methodology has been compared with different identification routines included into the MATLAB System Identification Toolbox™, showing, in general, better results for the proposed methodology in this paper, with up to almost 80% of fitting in some cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.