Interest in improving advertisement impact on potential consumers has increased recently. One well-known strategy is to use emotion-based advertisement. In this approach, an emotional link with consumers is created, aiming to enhance the memorization process. In recent years, Neuromarketing techniques have allowed us to obtain more objective information on this process. However, the role of the autonomic nervous system (ANS) in the memorization process using emotional advertisement still needs further research. In this work, we propose the use of two physiological signals, namely, an electrocardiogram (heart rate variability, HRV) and electrodermal activity (EDA), to obtain indices assessing the ANS. We measured these signals in 43 subjects during the observation of six different spots, each conveying a different emotion (rational, disgust, anger, surprise, and sadness). After observing the spots, subjects were asked to answer a questionnaire to measure the spontaneous and induced recall. We propose the use of a statistical data-driven model based on Partial Least Squares-Path Modeling (PSL-PM), which allows us to incorporate contextual knowledge by defining a relational graph of unobservable variables (latent variables, LV), which are, in turn, estimated by measured variables (indices of the ANS). We defined four LVs, namely, sympathetic, vagal, ANS, and recall. Sympathetic and vagal are connected to the ANS, the latter being a measure of recall, estimated from a questionnaire. The model is then fitted to the data. Results showed that vagal activity (described by HRV indices) is the most critical factor to describe ANS activity; they are inversely related except for the spot, which is mainly rational. The model captured a moderate-to-high variability of ANS behavior, ranging from 38% up to 64% of the explained variance of the ANS. However, it can explain at most 11% of the recall score of the subjects. The proposed approach allows for the easy inclusion of more physiological measurements and provides an easy-to-interpret model of the ANS response to emotional advertisement.
Atrial fibrillation (AF) is characterized by complex and irregular propagation patterns. Multipoint intracardiac mapping systems present a limited spatial resolution, which makes it difficult to identify AF drivers and ablation targets. These AF onset locations and drivers responsible for AF perpetuation are main targets for ablation procedures. Although noninvasive electrocardiographic imaging (ECGI) and inverse problem-based methods have been tested during AF conditions, they need an accurate mathematical modeling of atria and torso to get good results. In this work, we propose to model the location of AF drivers from body surface potentials (BPS) as a supervised classification problem. We used deep learning techniques to address the problem. We were able to correctly locate the 92% and 96% of drivers in the test and training sets, respectively (accuracy of 0.92 and 0.96), while the Cohen's Kappa was 0.89 for both sets. Therefore, proposed method can help to identify target regions for ablation using a noninvasive procedure as BSP mapping.
Atrial fibrillation (AF) is characterized by complex and irregular propagation patterns, and AF onset locations and drivers responsible for its perpetuation are the main targets for ablation procedures. ECG imaging (ECGI) has been demonstrated as a promising tool to identify AF drivers and guide ablation procedures, being able to reconstruct the electrophysiological activity on the heart surface by using a non-invasive recording of body surface potentials (BSP). However, the inverse problem of ECGI is ill-posed, and it requires accurate mathematical modeling of both atria and torso, mainly from CT or MR images. Several deep learning-based methods have been proposed to detect AF, but most of the AF-based studies do not include the estimation of ablation targets. In this study, we propose to model the location of AF drivers from BSP as a supervised classification problem using convolutional neural networks (CNN). Accuracy in the test set ranged between 0.75 (SNR = 5 dB) and 0.93 (SNR = 20 dB upward) when assuming time independence, but it worsened to 0.52 or lower when dividing AF models into blocks. Therefore, CNN could be a robust method that could help to non-invasively identify target regions for ablation in AF by using body surface potential mapping, avoiding the use of ECGI.
In this chapter we present the complete development of a novel course on "Biomedical Devices", in the framework of the "Biomedical Engineering" Degree at Universidad Politécnica de Madrid (TU Madrid). The course is based on the "CDIO: Conceive, Design, Implement, Operate" approach, as we consider it a very remarkable way of promoting student active learning and of integrating, with impact, novel concepts into ongoing curricula. During the course, groups of students live through the complete development process of different biomedical devices aimed at providing answers to relevant social needs. Computer-aided engineering and rapid prototyping technologies are used as support tools for their designs and prototypes, so as to rapidly reach the implementation and operation phases. Main benefits, lessons learned and challenges, linked to this CDIO-based course, are analyzed, considering the results from 2014-2015 academic year. Some of the most remarkable biodevices developed by students are linked to the field of biomedical microdevices for interacting at a cellular level, the central topic of present Handbook. The complete development of two bioreactors, which have led to Master's Degree Theses, after additional tasks carried out in parallel to the course, is also schematized and presented as one of the most remarkable results of the teaching-learning strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.