The photochemistry and photophysics of a series of S-nitrosothiols (RSNOs) have been studied computationally. The photocleavage mechanism of the model compound CH(3)SNO to release CH(3)S· and ·NO was studied at the CASPT2 level resulting in a barrierless process when irradiating in the visible region (S(1)), in the near UV region (S(2)) and for photosensitized (T(1)) reaction. The absorption energy required to initiate photocleavage was calculated at the CASPT2 and B3P86 levels showing the possibility of the modulation of NO release by RSNO photoactivation as a function of the substituent R. Good correlations between the wavelengths of the lowest energy (1)(n,π*) and (1)(π,π*) transitions of aryl S-nitrosothiols and the corresponding Hammett constants of the substituents have been obtained.
Addition of an organolithium compound to a BN-phenanthrene with embedded B and N atoms is proposed to result in coordination of RLi to the boron atom. This coordination, supported by NMR spectroscopy and DFT calculations, increases the nucleophilicity of the system in the β position to the N atom and is therefore a useful tool for promoting regioselective C-H functionalization of BN aromatics.
A new methodology to calculate efficiently the absorption spectrum of a single molecule when subjected to mechanical stress is presented. As example, the developed methodology was applied to cis- and trans-azobenzene, commonly used as photoswitch in a wide variety of applications. The results show that both (1)(n,π*) and (1)(π,π*) optical transitions can be efficiently modulated by applying an external force. A structural analysis was performed to evaluate the role of each internal coordinate in the excitation process, taking into account the application of external forces at different positions of azobenzene. Moreover, stress-strain curves were calculated in order to determine the maximum applicable forces within the elastic region, highlighting notable differences between the mechanical properties of cis- and trans-azobenzene conformers. The optomechanical work obtained by elongation and compression steps is calculated for a single azobenzene molecule and compared to available experimental data. Finally, the implications derived from the application of azobenzene as main chain component of a linear polymer acting as a photoinduced motor are discussed.
Photoreactivity can be influenced by mechanical forces acting over a reacting chromophore. Nevertheless, the specific effect of the external forces in the photoreaction mechanism remains essentially unknown. Conical intersections are key structures in photochemistry, as they constitute the funnels connecting excited and ground states. These crossing points are well known to provide valuable information on molecular photoreactivity, including crucial aspects as potential photoproducts which may be predicted by just inspection of the branching plane vectors. Here, we outline a general framework for understanding the effect of mechanical forces on conical intersections and their implications on photoreactivity. Benzene S1/S0 conical intersection topology can be dramatically altered by applying less than 1 nN force, making the peaked pattern of the intersection become a sloped one, also provoking the transition state in the excited state to disappear. Both effects can be related to an increase in the photostability as the conical intersection becomes more accessible, and its topology in this case favors the recovery of the initial reactant. The results indicate that the presence of external forces acting over a chromophore have to be considered as a potential method for photochemical reactivity control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.