The combination of the continuously growing demand of energy in the world, the depletion of oil and its sharp price increase, as well as the urgent need for cleaner and more efficient fuels have boosted the global trade of liquefied natural gas (LNG). Nowadays, there is an increasing interest on the design philosophy of the LNG receiving terminals, due to the fact that the existing technologies either use seawater as heating source or burn part of the fuel for regasifying LNG, thus destroying the cryogenic energy of LNG and causing air pollution or harm to marine life. This investigation addresses the task of developing novel systems able to simultaneously regasify LNG and generate electric power in the most efficient and environmentally friendly way.Existing and proposed technologies for integrated LNG regasification and power generation were identified and simple, efficient, safe and compact alternatives were selected for further analysis. A baseline scenario for integrated LNG regasification and power generation was established and simulated, consisting of a cascaded Brayton configuration with a typical small gas turbine as topping cycle and a simple closed Brayton cycle as bottoming cycle. Various novel configurations were created, modeled and compared to the baseline scenario in terms of LNG regasification rate, efficiency and power output. The novel configurations include closed Rankine and Brayton cycles for the bottoming cycle, systems for power augmentation in the gas turbine and combinations of options. A study case with a simple and compact design was selected, preliminarily designed and analyzed according to characteristics and costs provided by suppliers. The performance, costs and design challenges of the study case were then compared to the baseline case. The results show that the study case causes lower investment costs and a smaller footprint of the plant, at the same time offering a simple design solution though with substantially lower efficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.