180 different mortars made with a dolomitic lime and different aggregates were prepared in order to be used in restoration works. This paper focuses on the effect of technological variables on pore structure and mechanical properties of dolomitic lime-based mortars. Compressive and flexural strengths of the specimens were discussed according to curing time, binder:aggregate ratios, attributes of the aggregates and porosity, at long-term tests.A strong increase in the strength of mortars has been found after 365 curing days as compared to 28 curing days. The strength has been mainly attributed to the portlandite carbonation, because no significant changes have been observed in the brucite. However, higher strengths than similar aerial lime-based mortars led to think in other mechanism which increases the strength: the calcite formation through a reaction of dedolomitization (alkali carbonate reaction, ACR) and the brucite crystallization were discussed.The pore structure has presented a significant influence on the strength. More binder amounts mean more strength due to the higher values of open porosity, which allows the carbonation process. The aggregate characteristics have been correlated with the strength and porosity. Limestone and angle-shaped aggregates, reducing large pores, cause a strength increment.
Cosmic‐ray neutron sensing (CRNS) was used in a drip‐irrigated field.
Soil water content was estimated from CRNS.
Neutron transport was simulated for the drip‐irrigated field.
CRNS has limitations for irrigation scheduling of drip‐irrigated fields.
Irrigation is essential for maintaining food production in water‐scarce regions. The irrigation need depends on the water content of the soil, which we measured with the novel technique of cosmic‐ray neutron sensing (CRNS). The potential of the CRNS technique for drip irrigation scheduling was explored in this study for the Picassent site near Valencia, Spain. To support the experimental evidence, the neutron transport simulation URANOS was used to simulate the effect of drip irrigation on the neutron counts. The overall soil water content (SWC) in the CRNS footprint was characterized with a root mean square error <0.03 cm3/cm3, but the experimental dataset indicated methodological limitations to detect drip water input. Both experimental data and simulation results suggest that the large‐area neutron response to drip irrigation is insignificant in our specific case using a standard CRNS probe. Because of the small area of irrigated patches and short irrigation time, the limited SWC changes due to drip irrigation were not visible from the measured neutron intensity changes. Our study shows that CRNS modeling can be used to assess the suitability of the CRNS technique for certain applications. While the standard CRNS probe was not able to detect small‐scale drip irrigation patterns, the method might be applicable for larger irrigated areas, in drier regions, and for longer and more intense irrigation periods. Since statistical noise is the main limitation of the CRNS measurement, the capability of the instrument could be improved in future studies by larger and more efficient neutron detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.