Abstract-Analysis of respiratory muscles activity is an effective technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Respiratory diseases, especially those associated with changes in the mechanical properties of the respiratory apparatus, are often associated with disruptions of the normally highly coordinated contractions of respiratory muscles. Due to the complexity of the respiratory control, the assessment of OSAS related dysfunctions by linear methods are not sufficient. Therefore, the objective of this study was the detection of diagnostically relevant nonlinear complex respiratory mechanisms. Two aims of this work were: 1) to assess coordination of respiratory muscles contractions through evaluation of interactions between respiratory signals and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF); 2) to differentiate between functioning of respiratory muscles in patients with OSAS and in normal subjects. Electromyographic (EMG) and mechanomyographic (MMG) signals were recorded from three respiratory muscles: genioglossus, sternomastoid and diaphragm. Inspiratory pressure and flow were also acquired. All signals were measured in eight patients with OSAS and eight healthy subjects during an increased respiratory effort while awake. Several variables were defined and calculated from CMIF in order to describe correlation between signals. The results indicate different nonlinear couplings of respiratory muscles in both populations. This effect is progressively more evident at higher levels of respiratory effort.
Analysis of the respiratory muscle activity is a promising technique for diagnosis of respiratory diseases, such as chronic obstructive pulmonary disease (COPD). The sternomastoid muscle (SMM) was selected to study the activity of respiratory muscles due to its accessibility in order to define a noninvasive analysis. The aims of this work are two: analyze the relationship between the SMM function and pulmonary obstruction, and study the influence of spectral estimator on frequency parameters related with the muscle activity. For the first goal, we propose the analysis of vibromyographic and electromyographic signals from the SMM to study the muscle function during two ventilatory tests. Activity of SMM was found by means of several indexes: root-mean-square (rms) values, mean and median frequencies, and ratio between high and low-frequency components. For the second goal, spectral analysis was performed by means of nonparametric methods: Correlogram and Welch periodogram, and parametric methods: autoregressive (AR), moving average (MA), and ARMA models. It is deduced that these indexes show muscle activity and certain fatigue of the SMM, whose muscle function depends on the level of pulmonary obstruction, and they depend a lot of spectral estimator being the more suitable an AR model with high order.
Respiratory system modeling has been extensively studied in steady-state conditions to simulate sleep disorders, to predict its behavior under ventilatory diseases or stimuli and to simulate its interaction with mechanical ventilation. Nevertheless, the studies focused on the instantaneous response are limited, which restricts its application in clinical practice. The aim of this study is double: firstly, to analyze both dynamic and static responses of two known respiratory models under exercise stimuli by using an incremental exercise stimulus sequence (to analyze the model responses when step inputs are applied) and experimental data (to assess prediction capability of each model). Secondly, to propose changes in the models' structures to improve their transient and stationary responses. The versatility of the resulting model vs. the other two is shown according to the ability to simulate ventilatory stimuli, like exercise, with a proper regulation of the arterial blood gases, suitable constant times and a better adjustment to experimental data. The proposed model adjusts the breathing pattern every respiratory cycle using an optimization criterion based on minimization of work of breathing through regulation of respiratory frequency.
Objective. We propose a novel automated method called the S-Transform Gaussian Mixture detection algorithm (SGM) to detect high-frequency oscillations (HFO) combining the strengths of different families of previously published detectors. Approach. This algorithm does not depend on parameter tuning on a subject (or database) basis, uses time-frequency characteristics, and relies on non-supervised classification to determine if the events standing out from the baseline activity are HFO or not. SGM consists of three steps: the first stage computes the signal baseline using the entropy of the autocorrelation; the second uses the S-Transform to obtain several time-frequency features (area, entropy, and time and frequency widths); and in the third stage Gaussian mixture models cluster time-frequency features to decide if events correspond to HFO-like activity. To validate the SGM algorithm we tested its performance in simulated and real environments. Main results. We assessed the algorithm on a publicly available simulated stereoelectroencephalographic (SEEG) database with varying signal-to-noise ratios (SNR), obtaining very good results for medium and high SNR signals. We further tested the SGM algorithm on real signals from patients with focal epilepsy, in which HFO detection was performed visually by experts, yielding a high agreement between experts and SGM. Significance. The SGM algorithm displayed proper performance in simulated and real environments and therefore can be used for non-supervised detection of HFO. This non-supervised algorithm does not require previous labelling by experts or parameter adjustment depending on the subject or database considered. SGM is not a computationally intensive algorithm, making it suitable to detect and characterize HFO in long-term SEEG recordings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.