Inspection strategies with guided wave-based approaches give to structural health monitoring (SHM) applications several advantages, among them, the possibility of the use of real data from the structure which enables continuous monitoring and online damage identification. These kinds of inspection strategies are based on the fact that these waves can propagate over relatively long distances and are able to interact sensitively with and uniquely with different types of defects. The principal goal for SHM is oriented to the development of efficient methodologies to process these data and provide results associated with the different levels of the damage identification process. As a contribution, this work presents a damage detection and classification methodology which includes the use of data collected from a structure under different structural states by means of a piezoelectric sensor network taking advantage of the use of guided waves, hierarchical nonlinear principal component analysis (h-NLPCA), and machine learning. The methodology is evaluated and tested in two structures: (i) a carbon fibre reinforced polymer (CFRP) sandwich structure with some damages on the multilayered composite sandwich structure and (ii) a CFRP composite plate. Damages in the structures were intentionally produced to simulate different damage mechanisms, that is, delamination and cracking of the skin.
This paper presents a methodology for the detection and classification of structural changes under different temperature scenarios using a statistical data-driven modelling approach by means of a distributed piezoelectric active sensor network at different actuation phases. An initial baseline pattern for each actuation phase for the healthy structure is built by applying multiway principal component analysis (MPCA) to wavelet approximation coefficients calculated using the discrete wavelet transform (DWT) from ultrasonic signals which are collected during several experiments. In addition, experiments are performed with the structure in different states (simulated damages), pre-processed and projected into the different baseline patterns for each actuator. Some of these projections and squared prediction errors (SPE) are used as input feature vectors to a self-organizing map (SOM), which is trained and validated in order to build a final pattern with the aim of providing an insight into the classified states. The methodology is tested using ultrasonic signals collected from an aluminium plate and a stiffened composite panel. Results show that all the simulated states are successfully classified no matter what the kind of damage or the temperature is in both structures.
This article is concerned with the experimental validation of a structural health monitoring methodology for damage detection and identification. Three different data-driven multivariate algorithms are considered here to obtain the baseline pattern. These are based on principal component analysis, independent component analysis and hierarchical nonlinear principal component analysis. The contribution of this article is to examine and compare the three proposed algorithms that have been reported as reliable methods for damage detection and identification. The approach is based on a distributed piezoelectric active sensor network for the excitation and detection of structural dynamic responses. A woven multilayered composite plate and a simplified aircraft composite skin panel are used as examples to test the approaches. Data-driven baseline patterns are built when the structure is known to be healthy from wavelet coefficients of the structural dynamic responses. Damage is then simulated by adding masses at different positions of the structures. The data from the structure in different states (damaged or not) are then projected into the different models by each actuator in order to generate the input feature vectors of a self-organizing map from the computed components together with squared prediction error measures. All three methods are shown to be successful in detecting and classifying the simulated damages. At the end, a critical comparison is given in order to investigate the advantages and disadvantages of each method for the damage detection and identification tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.