The present paper reviews vasodilator compounds isolated from plants that were reported in the past 22 years (1990 to 2012) and the different mechanisms of action involved in their vasodilator effects. The search for reports was conducted in a comprehensive manner, intending to encompass those metabolites with a vasodilator effect whose mechanism of action involved both vascular endothelium and arterial smooth muscle. The results obtained from our bibliographic search showed that over half of the isolated compounds have a mechanism of action involving the endothelium. Most of these bioactive metabolites cause vasodilation either by activating the nitric oxide/cGMP pathway or by blocking voltage-dependent calcium channels. Moreover, it was found that many compounds induced vasodilation by more than one mechanism. This review confirms that secondary metabolites, which include a significant group of compounds with extensive chemical diversity, are a valuable source of new pharmaceuticals useful for the treatment and prevention of cardiovascular diseases.
The chemical composition of the essential oil of Chysactinia mexicana was analyzed by gas chromatography-mass spectrometry. Seventeen compounds were characterized; eucalyptol (41.3%), piperitone (37.7%), and linalyl acetate (9.1%) were found as the major components. The essential oil of leaves and piperitone completely inhibited Aspergillus flavus growth at relatively low concentrations (1.25 and 0.6 mg/mL, respectively).
The composition of a chloroform seed extract of C. papaya was determined by GC-MS. Nineteen compounds were identified, with oleic (45.97%), palmitic (24.1%) and stearic (8.52%) acids being the main components. The insecticidal and insectistatic activities of the extract and the three main constituents were tested. Larval duration increased by 3.4 d and 2.5 d when the extract was used at 16,000 and 9,600 ppm, respectively, whereas the pupal period increased by 2.2 d and 1.1 d at the same concentrations. Larval viability values were 0%, 29.2%, and 50% when the extract was applied at 24,000, 16,000, and 9,600 ppm, respectively; pupal viability was 42.9% and 66.7% at 16,000 and 9,600 ppm; and pupal weight decreased by 25.4% and 11.5% at 16,000 and 9,600 ppm. The larval viability of the main compounds was 33.3%, 48.5%, and 62.5% when exposed to 1,600 ppm of palmitic acid, oleic acid, or stearic acid, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.