SUMMARY The enucleated vascular elements of the xylem and the phloem offer an excellent system to test the effect of ploidy on plant function because variation in vascular geometry has a direct influence on transport efficiency. However, evaluations of conduit sizes in polyploid plants have remained elusive, most remarkably in woody species. We used a combination of molecular, physiological and microscopy techniques to model the hydraulic resistance between source and sinks in tetraploid and diploid mango trees. Tetraploids exhibited larger chloroplasts, mesophyll cells and stomatal guard cells, resulting in higher leaf elastic modulus and lower dehydration rates, despite the high water potentials of both ploidies in the field. Both the xylem and the phloem displayed a scaling of conduits with ploidy, revealing attenuated hydraulic resistance in tetraploids. Conspicuous wall hygroscopic moieties in the cells involved in transpiration and transport indicate a role in volumetric adjustments as a result of turgor change in both ploidies. In autotetraploids, the enlargement of organelles, cells and tissues, which are critical for water and photoassimilate transport at long distances, point to major physiological novelties associated with whole‐genome duplication.
The enucleated vascular elements of the xylem and the phloem offer an excellent system to test the effect of ploidy on plant function because variation in vascular geometry has a direct influence on transport efficiency. However, evaluations of conduit sizes in polyploid plants have remained elusive, most remarkably in woody species. We used a combination of molecular, physiological, and microscopy techniques to model the hydraulic resistance between source and sinks in tetraploid and diploid mango trees. Tetraploids exhibited larger chloroplasts, mesophyll cells, and stomatal guard cells, resulting in higher leaf elastic modulus and lower dehydration rates despite the high water potentials of both ploidies in the field. Both the xylem and the phloem displayed a scaling of conduits with ploidy, revealing attenuated hydraulic resistance in tetraploids. Conspicuous wall hygroscopic moieties in the cells involved in processes of transpiration and transport advocates a role in volumetric adjustments due to turgor change in polyploids, which, together with the enlargement of organelles, cells, and tissues that are critical for water and photoassimilate transport at long distances, imply major physiological novelties of polyploidy.
Mango (Mangifera indica L., Anacardiaceae), the fifth most consumed fruit worldwide, is one of the most important fruit crops in tropical regions, but its vascular anatomy is quite unexplored. Previous studies examined the xylem structure in the stems of mango, but the anatomy of the phloem has remained elusive, leaving the long-distance transport of photoassimilates understudied. We combined fluorescence and electron microscopy to evaluate the structure of the phloem tissue in the tapering branches of mango trees, and used this information to describe the hydraulic conductivity of its sieve tube elements following current models of fluid transport in trees. We revealed that the anatomy of the phloem changes from current year branches, where it was protected by pericyclic fibres, to older ones, where the lack of fibres was concomitant with laticiferous canals embedded in the phloem tissue. Callose was present in the sieve plates, but also in the walls of the phloem sieve cells, making them discernible from other phloem cells. A scaling geometry of the sieve tube elements—including the number of sieve areas and the pore size across tapering branches—resulted in an exponential conductivity towards the base of the tree. These evaluations in mango fit with previous measurements of the phloem architecture in the stems of forest trees, suggesting that, despite agronomic management, the phloem sieve cells scale with the tapering branches. The pipe model theory applied to the continuous tubing system of the phloem appears as a good approach to understand the hydraulic transport of photoassimilates in fruit trees.
Mangifera indica is the fifth most consumed fruit worldwide, and the most important in tropical regions, but its anatomy is quite unexplored. Previous studies examined the effect of chemicals on the xylem structure in the stems of mango, but the anatomy of the phloem has remained elusive, leaving the long distance transport of photo assimilates understudied.In this work, we used a combination of fluorescence and electron microscopy to evaluate in detail the structure of the sieve tube elements composing the phloem tissue in the tapering branches of mango trees. We then used this information to better understand the hydraulic conductivity of the sieve tubes following current models of fluid transport in trees.Our results revealed that the anatomy of the phloem in the stems changes from current year branches, where it was protected by pericyclic fibers, to older ones, where the lack of fibers was concomitant with laticiferous canals embedded in the phloem tissue. Callose was present in the sieve plates, but also in the walls of the phloem conduits, making them discernible from other phloem cells in fresh sections. A scaling geometry of the sieve tube elements, including the number of sieve areas and the pore size across tapering branches resulted in an exponential conductivity from current year branches to the base of the tree.Our measurements of the phloem in mango fit with measurements of the phloem architecture in the stems of forest woody species, and imply that, despite agronomic pruning practices, the sieve conduits of the phloem scale with the tapering branches. As a result, the pipe model theory applied to the continuous tubing system of the phloem appears as a good approach to understand the “long distance” hydraulic transport of photoassimilates in fruit trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.